首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有19条查询结果,搜索用时 250 毫秒
1.
We investigated the ability to match finger orientation to the direction of the axis of rotation in structure-from-motion displays. Preliminary experiments verified that subjects could accurately use the index finger to report direction. The remainder of the experiments studied the perception of the axis of rotation from full rotations of a group of discrete points, the profiles of a rotating ellipsoid, and two views of a group of discrete points. Subjects’ responses were analyzed by decomposing the pointing responses into their slant and tilt components. Overall, the results indicated that subjects were sensitive to both slant and tilt. However, when the axis of rotation was near the viewing direction, subjects had difficulty reporting tilt with profiles and two views and showed a large bias in their slant judgments with two views and full rotations. These results are not entirely consistent with theoretical predictions. The results, particularly for two views, suggest that additional constraints are used by humans in the recovery of structure from motion.  相似文献   
2.
The primary objective of this study was to quantitatively investigate the human perception of surface curvature by using virtual surfaces and motor tasks along with data analysis methods to estimate surface curvature from drawing movements. Three psychophysical experiments were conducted. In Experiment 1, we looked at subjects' sensitivity to the curvature of a curve lying on a surface and changes in the curvature as defined by Euler's formula, which relates maximum and minimum principal curvatures and their directions. Regardless of direction and surface shape (elliptic and hyperbolic), subjects could report the curvature of a curve lying on a surface through a drawing task. In addition, multiple curves drawn by subjects were used to reconstruct the surface. These reconstructed surfaces could be better accounted for by analysis that treated the drawing data as a set of curvatures rather than as a set of depths. A pointing task was utilized in Experiment 2, and subjects could report principal curvature directions of a surface rather precisely and consistently when the difference between principal curvatures was sufficiently large, but performance was poor for the direction of zero curvature (asymptotic direction) on a hyperbolic surface. In Experiment 3, it was discovered that sensitivity to the sign of curvature was different for perceptual judgments and motor responses, and there was also a difference for that of a curve itself and the same curve embedded in a surface. These findings suggest that humans are sensitive to relative changes in curvature and are able to comprehend quantitative surface curvature for some motor tasks.  相似文献   
3.
Four computational problems to be solved for visually guided reaching movements, hand path, and trajectory formations, coordinate transformation, and calculations of muscle tensions are ill-posed in redundant biological control systems. These problems are ill-posed in the sense that there exist an infinite number of possible solutions. In this article, it is shown that the nervous system can solve those problems simultaneously by imposing a single global constraint: finding the smoothest muscle- tension trajectory that satisfies the desired final hand position, velocity, and acceleration. Horizontal trajectories were simulated by using a l7-muscle model of the monkey's arm as the controlled object. The simulations predicted gently curved hand paths for lateral hand movements and for movements from the side of the body to the front, and a roughly straight hand path for anterioposterior movements. The tangential hand velocities were roughly bell shaped. The simulated results were in agreement with the actual biological movements.  相似文献   
4.
The perception of local orientation from shaded images was examined. In Experiment 1, subjects viewed a boundaryless Gaussian hill and judged local orientation using both a gauge figure and a pointing method. One subject reported an internally consistent surface which was incompatible with the judged light-source direction and model used to generate the image. The remaining subjects reported a surface similar to the generating one, and analysis of their results indicated a contour of zero difference between response and generating slants. This contour of zero slant difference was explored in three subsequent experiments using the pointing technique. These experiments investigated possible influences of luminance artifact (Experiment 2), perception of global orientation (Experiment 3), and self-occluding contours (Experiment 4). All three of these experiments yielded results similar to those of Experiment 1, with distinct contours of zero slant difference. This contour was explored for relationships with the simulated slant of the generating surface and the differential structure of image intensity. This analysis indicated that the contour of zero slant difference was approximately a line of constant slant which shared large regions of adjacency to the zero crossings of the second directional derivative of image intensity.  相似文献   
5.
The useful visual field size at each fixation in a pattern was investigated by artificially supplying various visual field sizes on a TV display. The degree of pattern perception was measured in terms of recognition memory for pictures, and the speed of processing pictures was determined as a function of field size. A serious deterioration in the perception of pictures occurred as the visual field was limited to a small area around the fovea (about 3.3° × 3.3°), processing speed becoming extremely slow. Speed increased gradually as visual field size became larger, to reach a certain level beyond which no further increase was observed. The visual field size at this asymptotic speed was called the useful visual field and was found to be about 50% of the entire pattern size. Analysis of eye-movement records demonstrated that in terms of the useful visual field, the scanning characteristics of the eye over the pattern occurred in a heavily overlapping manner to assure good perception of the pattern.  相似文献   
6.
It is well known that sleepiness is sometimes experienced in the afternoon. A short afternoon nap is thought to be effective in reducing sleepiness. However, sleep inertia occurs even after a short nap, and this could be a major risk factor for injuries from falling by the elderly. In the present study, the effect of self-awakening on sleep inertia after a 20-min. nap was examined. Nine participants (M=74.1 yr., SD=5.0 yr.) took part in the three experimental conditions: the self-awakened nap, the forced-awakened nap, and the control (no-nap) conditon. Analysis showed sleepiness and performance after the nap significantly improved compared with the control condition. P3 amplitude tended to be larger after self-awakening than after forced-awakening. The present study indicates a 20-min. nap reduces afternoon sleepiness, and the application of self-awakening may contribute to higher arousal after a nap taken by this elderly group.  相似文献   
7.
We propose a hybrid neural network model of aimed arm movements that consists of a feedforward controller and a postural controller. The cascade neural network of Kawato, Maeda, Uno, and Suzuki (1990) was employed as a computational implementation of the feedforward controller. This network computes feedforward motor commands based on a minimum torque-change criterion. If the weighting parameter of the smoothness criterion is fixed and the number of relaxation iterations is rather small, the cascade model cannot calculate the exact torque, and the hand does not reach the desired target by using the feedforward control alone. Thus, one observes an error between the final position and the desired target location. By using a fixed weighting parameter value and a limited iteration number to simulate target-directed arm movements, we found that the cascade model generated a planning time–accuracy trade-off, and a quasi–power-law type of speed–accuracy trade-off. The model provides a candidate neural mechanism to explain the stochastic variability of the time course of the feedforward motor command. Our approach also accounts for several invariant features of multijoint arm trajectories, such as roughly straight hand paths and bell-shaped speed profiles.  相似文献   
8.
9.
We propose a hybrid neural network model of aimed arm movements that consists of a feedforward controller and a postural controller. The cascade neural network of Kawato, Maeda, Uno, and Suzuki (1990) was employed as a computational implementation of the feedforward controller. This network computes feedforward motor commands based on a minimum torque-change criterion. If the weighting parameter of the smoothness criterion is fixed and the number of relaxation iterations is rather small, the cascade model cannot calculate the exact torque, and the hand does not reach the desired target by using the feedforward control alone. Thus, one observes an error between the final position and the desired target location. By using a fixed weighting parameter value and a limited iteration number to simulate target-directed arm movements, we found that the cascade model generated a planning time-accuracy trade-off, and a quasi-power-law type of speed-accuracy trade-off. The model provides a candidate neural mechanism to explain the stochastic variability of the time course of the feedforward motor command. Our approach also accounts for several invariant features of multijoint arm trajectories, such as roughly straight hand paths and bell-shaped speed profiles.  相似文献   
10.
Psychophysiological variables which affect the activity of schoolchildren with subjective chronic fatigue were studied. For 32 Japanese elementary school children, 15 boys and 17 girls in Grade 4, the major finding was that the majority of children with subjective chronic fatigue were less active in school. The motor and academic performance of children with greater subjective chronic fatigue were significantly inferior to those of normal children. Good learning was associated with less drowsiness. These findings suggest that subjective chronic fatigue is closely related to daily activities, especially adjustment to school.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号