首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1990年   1篇
排序方式: 共有19条查询结果,搜索用时 187 毫秒
1.
We investigated the ability to match finger orientation to the direction of the axis of rotation in structure-from-motion displays. Preliminary experiments verified that subjects could accurately use the index finger to report direction. The remainder of the experiments studied the perception of the axis of rotation from full rotations of a group of discrete points, the profiles of a rotating ellipsoid, and two views of a group of discrete points. Subjects’ responses were analyzed by decomposing the pointing responses into their slant and tilt components. Overall, the results indicated that subjects were sensitive to both slant and tilt. However, when the axis of rotation was near the viewing direction, subjects had difficulty reporting tilt with profiles and two views and showed a large bias in their slant judgments with two views and full rotations. These results are not entirely consistent with theoretical predictions. The results, particularly for two views, suggest that additional constraints are used by humans in the recovery of structure from motion.  相似文献   
2.
We examined how the recognition of facial emotion was influenced by manipulation of both spatial and temporal properties of 3-D point-light displays of facial motion. We started with the measurement of 3-D position of multiple locations on the face during posed expressions of anger, happiness, sadness, and surprise, and then manipulated the spatial and temporal properties of the measurements to obtain new versions of the movements. In two experiments, we examined recognition of these original and modified facial expressions: in experiment 1, we manipulated the spatial properties of the facial movement, and in experiment 2 we manipulated the temporal properties. The results of experiment 1 showed that exaggeration of facial expressions relative to a fixed neutral expression resulted in enhanced ratings of the intensity of that emotion. The results of experiment 2 showed that changing the duration of an expression had a small effect on ratings of emotional intensity, with a trend for expressions with shorter durations to have lower ratings of intensity. The results are discussed within the context of theories of encoding as related to caricature and emotion.  相似文献   
3.
The primary objective of this study was to quantitatively investigate the human perception of surface curvature by using virtual surfaces and motor tasks along with data analysis methods to estimate surface curvature from drawing movements. Three psychophysical experiments were conducted. In Experiment 1, we looked at subjects' sensitivity to the curvature of a curve lying on a surface and changes in the curvature as defined by Euler's formula, which relates maximum and minimum principal curvatures and their directions. Regardless of direction and surface shape (elliptic and hyperbolic), subjects could report the curvature of a curve lying on a surface through a drawing task. In addition, multiple curves drawn by subjects were used to reconstruct the surface. These reconstructed surfaces could be better accounted for by analysis that treated the drawing data as a set of curvatures rather than as a set of depths. A pointing task was utilized in Experiment 2, and subjects could report principal curvature directions of a surface rather precisely and consistently when the difference between principal curvatures was sufficiently large, but performance was poor for the direction of zero curvature (asymptotic direction) on a hyperbolic surface. In Experiment 3, it was discovered that sensitivity to the sign of curvature was different for perceptual judgments and motor responses, and there was also a difference for that of a curve itself and the same curve embedded in a surface. These findings suggest that humans are sensitive to relative changes in curvature and are able to comprehend quantitative surface curvature for some motor tasks.  相似文献   
4.
Perceiving affect from arm movement.   总被引:4,自引:0,他引:4  
We examined the visual perception of affect from point-light displays of arm movements. Two actors were instructed to perform drinking and knocking movements with ten different affects while the three-dimensional positions of their arms were recorded. Point-light animations of these natural movements and phase-scrambled, upside-down versions of the same knocking movements were shown to participants who were asked to categorize the affect of the display. In both cases the resulting confusion matrices were analyzed using multidimensional scaling. For the natural movements the resulting two-dimensional psychological space was similar to a circumplex with the first dimension appearing as activation and the second dimension as pleasantness. For the scrambled displays the first dimension was similar in structure to that obtained for the natural movements but the second dimension was not. With both natural and scrambled movements Dimension 1 of the psychological space was highly correlated to the kinematics of the movement. These results suggest that the corresponding activation of perceived affect is a formless cue that relates directly to the movement kinematics while the pleasantness of the movement appears to be carried in the phase relations between the different limb segments.  相似文献   
5.
The perception of local orientation from shaded images was examined. In Experiment 1, subjects viewed a boundaryless Gaussian hill and judged local orientation using both a gauge figure and a pointing method. One subject reported an internally consistent surface which was incompatible with the judged light-source direction and model used to generate the image. The remaining subjects reported a surface similar to the generating one, and analysis of their results indicated a contour of zero difference between response and generating slants. This contour of zero slant difference was explored in three subsequent experiments using the pointing technique. These experiments investigated possible influences of luminance artifact (Experiment 2), perception of global orientation (Experiment 3), and self-occluding contours (Experiment 4). All three of these experiments yielded results similar to those of Experiment 1, with distinct contours of zero slant difference. This contour was explored for relationships with the simulated slant of the generating surface and the differential structure of image intensity. This analysis indicated that the contour of zero slant difference was approximately a line of constant slant which shared large regions of adjacency to the zero crossings of the second directional derivative of image intensity.  相似文献   
6.
Point-light displays of human gait provide information sufficient to recognize the gender of a walker and are taken as evidence of the exquisite tuning of the visual system to biological motion. The authors revisit this topic with the goals of quantifying human efficiency at gender recognition. To achieve this, the authors first derive an ideal observer for gender recognition on the basis of center of moment (J. E. Cutting, D. R. Proffitt, & L. T. Kozlowski, 1978) and, with the use of anthropometric data from various populations, show optimal recognition of approximately 79% correct. Next, they perform a meta-analysis of 21 experiments examining gender recognition, obtaining accuracies of 66% correct for a side view and 71% for other views. Finally, results of the meta-analysis and the ideal observer are combined to obtain estimates of human efficiency at gender recognition of 26% for the side view and 47% for other views.  相似文献   
7.
Four experiments related human perception of shape from profiles to current theoretical predictions. In Experiment 1, judgments of structure and motion were obtained for single- and dualellipsoid displays rotating about various axes. Ratings were highest when the axis of rotation was in the image plane and were influenced by the number of ellipsoids and the orientation of a single ellipsoid. The subsequent experiments explored the effect of orientation on shape judgments of a single ellipsoid. The results of Experiments 2 and 3 suggested that the effect of orientation found in Experiment 1 was not due to either the inability of certain orientations to be perceived as three-dimensional objects or to two-dimensional artifacts. It was thus argued that this effect of orientation was due to points of correspondence in relative motion that arise when the major axis is not perpendicular to the axis of rotation. In Experiment 4, subjects provided judgments of both shape and angular velocity. The elevated ellipsoids that were judged as larger were also judged as rotating more slowly. The inverse relationship between size and angular velocity is consistent with current theories. The connection between theory and data was further demonstrated by applying a shape-recovery algorithm to the stimuli used in Experiment 4 and finding a similar tradeoff between angular velocity and shape.  相似文献   
8.
A technique for the construction of exaggerated human movements was developed and its effectiveness tested for the case of categorising tennis serves as flat, slice, or topspin. The technique involves treating movements as points in a high-dimensional space and uses average movements as the basis for constructing exaggerated movements. Exaggerated movements of a particular style are defined as those points in the space of movements which lie on a line originating at the style average and in the direction defined by the difference between the style average and the grand average. In order to visualise the movements, computer animation techniques were employed to transform the three-dimensional coordinates of the movement into the motion of a solid-body figure. These solid-body models were used in perceptual experiments to assess the effectiveness of the exaggeration technique. After an initial training session on the exemplars from the original library, subjects viewed the synthetic tennis-serve motions and in two separate sessions either made three-alternative, categorisation judgments after viewing a single serve or rated dissimilarity after viewing a pair of serves. Results from both accuracy in the categorisation task and structure of a multidimensional scaling solution of the matrix of dissimilarities indicated that, as distance from the grand average increased, the service motion became more distinct and more accurately identified.  相似文献   
9.
The impression of animacy from the motion of simple shapes typically relies on synthetically defined motion patterns resulting in pseudorepresentations of human movement. Thus, it is unclear how these synthetic motions relate to actual biological agents. To clarify this relationship, we introduce a novel approach that uses video processing to reduce full-video displays of human interactions to animacy displays, thus creating animate shapes whose motions are directly derived from human actions. Furthermore, this technique facilitates the comparison of interactions in animacy displays from different viewpoints-an area that has yet to be researched. We introduce two experiments in which animacy displays were created showing six dyadic interactions from two viewpoints, incorporating cues altering the quantity of the visual information available. With a six-alternative forced choice task, results indicate that animacy displays can be created via this naturalistic technique and reveal a previously unreported advantage for viewing intentional motion from an overhead viewpoint.  相似文献   
10.
Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming the morphological confounding inherent in facial displays. In four studies, participants’ judgments revealed gender stereotyping. Observers accurately perceived emotion from biological motion displays (Study 1), and this affected sex categorizations. Angry displays were overwhelmingly judged to be men; sad displays were judged to be women (Studies 2–4). Moreover, this pattern remained strong when stimuli were equated for velocity (Study 3). We argue that these results were obtained because perceivers applied gender stereotypes of emotion to infer sex category (Study 4). Implications for both vision sciences and social psychology are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号