首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Despite the importance of action identification and discrimination in action perception and social cognition more broadly, little research has investigated how these processes are achieved. To this end, we sought to identify the extent to which adults capitalize on featural versus configural sources of information when discriminating small-scale human actions such as grasp and place. Results across two experiments indicate adults are sensitive to both sources of information in action discrimination, but selectively attend to featural over configural action information. The findings also parallel what is known regarding face processing: processing of configural information is especially disrupted by inversion, whereas processing of featural information is specifically affected by low-pass filtering.  相似文献   

2.
Given that all faces share the same set of features—two eyes, a nose, and a mouth—that are arranged in similar configuration, recognition of a specific face must depend on our ability to discern subtle differences in its featural and configural properties. An enduring question in the face-processing literature is whether featural or configural information plays a larger role in the recognition process. To address this question, the face dimensions task was designed, in which the featural and configural properties in the upper (eye) and lower (mouth) regions of a face were parametrically and independently manipulated. In a same–different task, two faces were sequentially presented and tested in their upright or in their inverted orientation. Inversion disrupted the perception of featural size (Exp. 1), featural shape (Exp. 2), and configural changes in the mouth region, but it had relatively little effect on the discrimination of featural size and shape and configural differences in the eye region. Inversion had little effect on the perception of information in the top and bottom halves of houses (Exp. 3), suggesting that the lower-half impairment was specific to faces. Spatial cueing to the mouth region eliminated the inversion effect (Exp. 4), suggesting that participants have a bias to attend to the eye region of an inverted face. The collective findings from these experiments suggest that inversion does not differentially impair featural or configural face perceptions, but rather impairs the perception of information in the mouth region of the face.  相似文献   

3.
Upside-down inversion disrupts the processing of spatial relations between the features of a face, while largely preserving local feature analysis. However, recent studies on face inversion failed to observe a clear dissociation between relational and featural processing. To resolve these discrepancies and clarify how inversion affects face perception, the authors monitored inversion effects separately for vertical and horizontal distances between features. Inversion dramatically declined performance in the vertical-relational condition, but it impaired featural and horizontal-relational performance only moderately. Identical observations were made whether upright and inverted trials were blocked or randomly interleaved. The largest performance decrement was found for vertical relations even when faces were rotated by 90 degrees. Evidence that inversion dramatically disrupts the ability to extract vertical but not horizontal feature relations supports the view that inversion qualitatively changes face perception by rendering some of the processes activated by upright faces largely ineffective.  相似文献   

4.
Goffaux V 《Acta psychologica》2008,128(1):119-126
Faces convey distinct types of information: features and their spatial relations, which are differentially vulnerable to inversion. While inversion largely disrupts the processing of vertical spatial relations (e.g. eyes’ height), its effect is moderate for horizontal relations (e.g. interocular distance) and local feature properties. The SF ranges optimally transmitting horizontal and vertical face relations were here investigated to further address their functional role in face perception. Participants matched upright and inverted pairs of faces that differed at the level of local featural properties, horizontal relations in vertical relations. Irrespective of SF, the inversion effect was larger for vertical than horizontal and featural cues. Most interestingly, SF differentially influenced the processing of vertical, horizontal and featural cues in upright faces. Vertical relations were optimally processed in intermediate SF, which are known to carry useful information for face individuation. In contrast, horizontal relations were best conveyed by high SF, which are involved in the processing of local face properties. These findings not only confirm that horizontal and vertical relations play distinct functional roles in face perception, but they also further suggest a unique role of vertical relations in face individuation.  相似文献   

5.
Expertise in face processing takes many years to develop. To determine the contribution of different face-processing skills to this slow development, we altered a single face so as to create sets of faces designed to measure featural, configural, and contour processing. Within each set, faces differed only in the shape of the eyes and mouth (featural set), only in the spacing of the eyes and mouth (spacing set), or only in the shape of the external contour (contour set). We presented adults, and children aged 6, 8, and 10 years, with pairs of upright and inverted faces and instructed them to indicate whether the two faces were the same or different. Adults showed a larger inversion effect for the spacing set than for the featural and external contour sets, confirming that the spacing set taps configural processing. On the spacing set, all groups of children made more errors than adults. In contrast, on the external contour and featural sets, children at all ages were almost as accurate as adults, with no significant difference beginning at age 6 on the external contour set and beginning at age 10 on the featural set. Overall, the results indicate that adult expertise in configural processing is especially slow to develop.  相似文献   

6.
This investigation examined whether impairment in configural processing could explain deficits in face emotion recognition in people with Parkinson’s disease (PD). Stimuli from the Radboud Faces Database were used to compare recognition of four negative emotion expressions by older adults with PD (n = 16) and matched controls (n = 17). Participants were tasked with categorizing emotional expressions from upright and inverted whole faces and facial composites; it is difficult to derive configural information from these two types of stimuli so featural processing should play a larger than usual role in accurate recognition of emotional expressions. We found that the PD group were impaired relative to controls in recognizing anger, disgust and fearful expressions in upright faces. Then, consistent with a configural processing deficit, participants with PD showed no composite effect when attempting to identify facial expressions of anger, disgust and fear. A face inversion effect, however, was observed in the performance of all participants in both the whole faces and facial composites tasks. These findings can be explained in terms of a configural processing deficit if it is assumed that the disruption caused by facial composites was specific to configural processing, whereas inversion reduced performance by making it difficult to derive both featural and configural information from faces.  相似文献   

7.
The face-inversion effect (FIE) can be viewed as being based on two kinds of findings. According to the face(UI) effect, perception and recognition are better for faces presented upright (U) than for faces presented inverted (I). According to the face/object(UI) effect, inversion impairs the processing of faces more than the processing of nonfacial objects (e.g., buildings or cars). Part I of this article focuses on the face(UI) effect and the configural-processing hypothesis, which is considered the most popular explanatory hypothesis of the FIE. In this hypothesis, it is proposed that inversion impairs the processing of configural information (the spatial relations between features) but hardly (if at all) impairs the processing of featural information (e.g., eyes, nose, and mouth). Part II of the article starts from the conclusion reached in part I, that the configural-processing hypothesis has not succeeded in explaining a substantial number of the findings and in resolving certain theoretical problems. The part then goes on to outline a new alternative model, the facescheme incompatibility (FSI) model, which contends with these theoretical problems, accounts for the configural-processing hypothesis, succeeds in explaining a considerable portion of the empirical findings related to the face(UI) effect, and proposes a relatively new research program on the concept of the face scheme. The basic assumption of the FSI model is that schemes and prototypes are involved in processing a visual stimulus of a face and in transforming it to a “meaning-bearing” face, and that different schemes are involved if the face is presented upright or inverted.  相似文献   

8.
The face-inversion effect (FIE) is explained by the configural-processing hypothesis. It proposes that inversion disrupts configural information processing (spatial links among facial features) and leaves the processing of featural information (eyes, nose, and mouth) comparatively intact. According to this hypothesis, an inverted isolated facial feature cannot show a feature-inversion effect--that is, behavior similar to the FIE--since all the spatial links between it and the other features in a face are eliminated; that is, the configural information is removed. The findings of the present study, which show that isolated eyes do exhibit the feature-inversion effect, support the extended configural-processing hypothesis. This proposes that inversion also impairs processing of the configural information within the eyes themselves. Removal of the brows in whole faces tended to interfere with processing of the configural information in the upright position but to facilitate processing in the inverted position.  相似文献   

9.
面孔知觉可能在区域尺度上发生多维信息整合, 但迄今无特异性实验证据。本研究在两个实验中操纵面孔眼睛区域或嘴巴区域的单维构型或特征信息, 测量人们觉察单维变化或跨维共变的敏感度, 以此检测面孔区域尺度上的多维信息整合有何现象与规律, 进而揭示面孔知觉的多维信息整合机制。实验获得3个发现:(1)正立面孔眼睛区域的信息变化觉察呈现出“跨维共变增益效应”, 跨维信息共变觉察的敏感度显著高于任意一种单维信息变化觉察的敏感度; (2)“跨维共变增益效应”只在正立面孔的眼睛区域出现, 在倒置面孔的眼睛区域、正立面孔的嘴巴区域或倒置面孔的嘴巴区域都没有出现, 因此具有面孔区域特异性和面孔朝向特异性; (3)就单维信息变化觉察而言, 眼睛区域的敏感度不会受到面孔倒置的损伤, 但是嘴巴区域的敏感度会受到面孔倒置的显著损伤。综合可知, 面孔知觉确实会发生区域尺度上的信息整合, 它不是普遍性的信息量效应, 而是特异性的眼睛效应(只发生在正立面孔的眼睛区域)。这是面孔整体加工(face holistic processing)在单维信息分辨和多维信息整合之间建立联系的必经环节。这提示我们对全脸多维信息知觉整合的理解需要从传统的面孔整体加工假设升级到以眼睛为中心的层级化多维信息整合算法(a hierarchical algorithm for multi-dimensional information integration)。  相似文献   

10.
Categorical perception of robustly represented faces (self, friend) and unfamiliar faces is investigated, and the relative roles of configural and featural information are examined. Participants performed identification and discrimination tasks on morph series containing the self-face and a friend's face (self-Friend 1), two friends' faces (Friend 2-Friend 3), and two unfamiliar faces (Unfamiliar 1-Unfamiliar 2), presented in upright and inverted orientations. For upright faces, categorical perception effects were observed for both familiar morph series but not for the unfamiliar morph series, suggesting that robust representation is a requirement for categorical perception in facial identity. For inverted faces, categorical perception was observed for the self-Friend 1 morph series only. This suggests that categorical perception is tied to configural processing for familiar non-self-faces, but can be observed for self-faces during featural processing-consistent with evidence that self-face representations contain strong configural and featural components. Finally, categorical perception is not enhanced by the presence of the self-face relative to other familiar faces when upright, but shows a trend of being enhanced for self-faces when inverted, adding to the debate on the ways in which robustly represented faces can elicit categorical perception.  相似文献   

11.
Configural and holistic coding are hallmarks of face perception. Although recent studies have shown that own-race faces are coded more holistically than other-race faces, the evidence for better configural coding of own-race faces is equivocal. We directly measured configural and component coding of own- and other-race male faces in Caucasian and Chinese participants. We manipulated individual features (components) or their spatial relations (configurations) using a novel morphing method to vary difficulty parametrically and tested sensitivity to these changes in a sequential matching task. Both configural and component coding were better for upright own-race than for upright other-race faces. Inversion impaired detection of configural changes more than it did detection of component changes, but also impaired performance more for easier discriminations,independent of type of change. These results challenge explanations of face expertise that rely solely on configural and holistic processing, and also call into question the widespread interpretation of large inversion decrements as diagnostic of configural coding.  相似文献   

12.
The face inversion effect (FIE) is a reduction in recognition performance for inverted faces (compared to upright faces) that is greater than that typically observed with other stimulus types (e.g., houses). The work of Diamond and Carey, suggests that a special type of configural information, “second-order relational information” is critical in generating this inversion effect. However, Tanaka and Farah concluded that greater reliance on second-order relational information did not directly result in greater sensitivity to inversion, and they suggested that the FIE is not entirely due to a reliance on this type of configural information. A more recent review by McKone and Yovel provides a meta-analysis that makes a similar point. In this paper, we investigated the contributions made by configural and featural information to the FIE. Experiments 1a and1b investigated the link between configural information and the FIE. Remarkably, Experiment 1b showed that disruption of all configural information of the type considered in Diamond and Carey's analysis (both first and second order) was effective in reducing recognition performance, but did not significantly impact on the FIE. Experiments 2 and 3 revealed that face processing is affected by the orientation of individual features and that this plays a major role in producing the FIE. The FIE was only completely eliminated when we disrupted the single feature orientation information in addition to the configural information, by using a new type of transformation similar to Thatcherizing our sets of scrambled faces. We conclude by noting that our results for scrambled faces are consistent with an account that has recognition performance entirely determined by the proportion of upright facial features within a stimulus, and that any ability to make use of the spatial configuration of these features seems to benefit upright and inverted normal faces alike.  相似文献   

13.
The aim of this study was to separately analyze the role of featural and configural face representations. Stimuli containing only featural information were created by cutting the faces into their parts and scrambling them. Stimuli only containing configural information were created by blurring the faces. Employing an old-new recognition task, the aim of Experiments 1 and 2 was to investigate whether unfamiliar faces (Exp. 1) or familiar faces (Exp. 2) can be recognized if only featural or configural information is provided. Both scrambled and blurred faces could be recognized above chance level. A further aim of Experiments 1 and 2 was to investigate whether our method of creating configural and featural stimuli is valid. Pre-activation of one form of representation did not facilitate recognition of the other, neither for unfamiliar faces (Exp. 1) nor for familiar faces (Exp. 2). This indicates a high internal validity of our method for creating configural and featural face stimuli. Experiment 3 examined whether features placed in their correct categorical relational position but with distorted metrical distances facilitated recognition of unfamiliar faces. These faces were recognized no better than the scrambled faces in Experiment 1, providing further evidence that facial features are stored independently of configural information. From these results we conclude that both featural and configural information are important to recognize a face and argue for a dual-mode hypothesis of face processing. Using the psychophysical results as motivation, we propose a computational framework that implements featural and configural processing routes using an appearance-based representation based on local features and their spatial relations. In three computational experiments (Experiments 4–6) using the same sets of stimuli, we show how this framework is able to model the psychophysical data.  相似文献   

14.
It has been suggested that face recognition is primarily based on configural information, with featural information playing little or no role. We investigated this idea by comparing the prototype effect for face prototypes that emphasized either featural or configural processing. In Experiment 1, participants showed a tendency to commit false alarms in response to nonstudied prototypes, and this tendency was equivalent for featural and configural prototypes. Experiment 2 replicated this finding, and provided support for the assumption that the two types of prototypes differed in terms of featural and configural processing: Face inversion eliminated the prototype effect for configural prototypes but not for featural prototypes. These results suggest that both featural and configural processing make important contributions to face recognition, and that their effects are dissociable.  相似文献   

15.
樊倩  隋雪  符永川 《心理学报》2014,46(8):1062-1071
考察面孔知觉中特征加工、结构加工和整体加工三种不同加工方式对应的眼动模式。实验1中, 将以特征信息为主的错乱面孔和以结构信息为主的模糊面孔作为线索刺激, 引发对测试面孔的特征加工和结构加工, 眼动分析表明:特征加工表现为对面孔各特征内更长的凝视时间, 结构加工表现为对面孔各特征间高频的眼跳。实验2采用相同的研究范式, 将完整面孔、轻度错乱面孔和低水平模糊面孔作为线索刺激, 引发对测试面孔除特征加工和结构加工外的另一种加工方式-- 整体加工, 表现为注视点更多地落在测试面孔中央区的鼻子部位以扩大注视范围, 进而把握整张面孔信息。本研究揭示了三种不同面孔加工方式眼动模式的差异。  相似文献   

16.
Configural/holistic processing, a key property of face recognition, has previously been examined only for front views of faces. Here, 6 experiments tested front (0 degrees ), three-quarter (45 degrees ), and profile views (90 degrees ), using composite and peripheral inversion tasks. Results showed an overall disadvantage in identifying profiles. This arose entirely from part-based processing: View effects were as strong for disrupted-configuration faces (inverted, misaligned, scrambled) as for normal-configuration faces. In contrast, configural processing (aligned-misaligned difference, upright-inverted difference) was equally strong for all views under both clear and degraded viewing conditions. Findings argue that, although part-based processing is weakened by lower natural frequency of the profile view and/or occlusion of key face features, neither of these variables influences configural processing. This suggests that the functional role of configural processing is to allow reliable face identification despite substantial variance in local information across different natural images. Results also show that only image-plane rotation of faces (upright through inverted) affects configural processing; the contrast with depth rotation has potential implications for understanding the origin of configural processing in terms of innate versus experience-based expertise contributions.  相似文献   

17.
One account of facial cognition, the dual-mode hypothesis, maintains that there are two sources of information in a human face, featural and configural, and that these sources are processed simultaneously and independently of one another. According to the hypothesis, the processing and identification of upright faces relies primarily on configural information, and this information is disrupted to such an extent upon inversion as to result in a reliance on featural information for identifying inverted faces (e.g., Searcy & Bartlett, 1996). When considered in terms of the general characteristics of human information processing, the foundational assumptions of the dual-mode hypothesis are as follows: Facial information processing is accomplished by a parallel self-terminating architecture with unlimited capacity to supercapacity and a preservation of independence between the rates of processing of featural and configural information. Although a number of studies have provided evidence consistent with the dual-mode hypothesis, until now there have been no direct tests of the foundational assumptions of the hypothesis. The present study provides that direct test, providing strong support for three of the assumptions (parallel self-terminating processing with unlimited capacity to supercapacity) while contradicting a fourth (independence in rates).  相似文献   

18.
A new stimulus set of 60 male-face stimuli in seven in-depth orientations was developed. The set can be used in research on configural versus featural mechanisms of face processing. Configural, or holistic, changes are produced by changing the global form of the face, whereas featural, or part-based, changes are attained by altering the local form of internal facial features. For each face in the set, there is one other face that differs only by its global form and one other face that differs only by its internal features. In all faces, extrafacial cues have been eliminated or standardized. The stimulus set also contains a color-coded division of each face in areas of interest, which is useful for eye movement research on face scanning strategies. We report a matching experiment with upright and inverted face pairs that demonstrates that the face stimulus set is indeed useful for research on configural and featural face perception. The stimulus set may be downloaded from the Psychonomic Society’s archive (brm.psychonomic-journals.org/content/supplemental) or from our Web site (http://ppw.kuleuven .be/labexppsy/ newSite/resources)  相似文献   

19.
Parr LA  Heintz M 《Perception》2006,35(11):1473-1483
The inversion effect, or impaired recognition of upside-down faces, is used as evidence supporting the configural processing of faces. Human studies report a linear relationship between face-discrimination performance and orientation, such that recognition is more difficult as faces are rotated away from their typical viewpoint. Previous studies on chimpanzees also support a configural bias for processing faces, particularly faces for which subjects have developed expertise. In the present study, we examined the influence of expertise and rotation angle on the visual perception of faces in chimpanzees. Six subjects were presented with unaltered and blurred conspecific faces and houses in five orientation angles. A computerized paradigm was used to further delineate the nature of configural face processing in this species. The data were consistent with those reported in humans: chimpanzees showed a significant linear impairment when discriminating conspecific faces as they rotated away from their upright orientation. No inversion effect was observed for discriminations involving houses. Thus, chimpanzees, like humans, show a face-specific inversion effect that is linearly affected by angle of orientation, suggesting that their visual processing of faces is strongly influenced by the extraction of configural cues and closely resembles the perceptual strategies of humans.  相似文献   

20.
The effect of imagery on featural and configural face processing was investigated using blurred and scrambled faces. By means of blurring, featural information is reduced; by scrambling a face into its constituent parts configural information is lost. Twenty-four participants learned ten faces together with the sound of a name. In following matching-to-sample tasks participants had to decide whether an auditory presented name belonged to a visually presented scrambled or blurred face in two experimental conditions. In the imagery condition, the name was presented prior to the visual stimulus and participants were required to imagine the corresponding face as clearly and vividly as possible. In the perception condition name and test face were presented simultaneously, thus no facilitation via mental imagery was possible. Analyses of the hit values showed that in the imagery condition scrambled faces were recognized significantly better than blurred faces whereas there was no such effect for the perception condition. The results suggest that mental imagery activates featural representations more than configural representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号