首页 | 本学科首页   官方微博 | 高级检索  
     


Velocity perception for sounds moving in frequency space
Authors:Molly J. Henry  J. Devin McAuley
Affiliation:Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA. henrymol@msu.edu
Abstract:In three experiments, we considered the relative contribution of frequency change (Δf) and time change (Δt) to perceived velocity (Δft) for sounds that moved either continuously in frequency space (Experiment 1) or in discrete steps (Experiments 2 and 3). In all the experiments, participants estimated “how quickly stimuli changed in pitch” on a scale ranging from 0 (not changing at all) to 100 (changing very quickly). Objective frequency velocity was specified in terms of semitones per second (ST/s), with ascending and descending stimuli presented on each trial at one of seven velocities (2, 4, 6, 8, 10, 12, and 14 ST/s). Separate contributions of frequency change (Δf) and time change (Δt) to perceived velocity were assessed by holding total Δt constant and varying Δf or vice versa. For tone glides that moved continuously in frequency space, both Δf and Δt cues contributed approximately equally to perceived velocity. For tone sequences, in contrast, perceived velocity was based almost entirely on Δt, with surprisingly little contribution from Δf. Experiment 3 considered separate judgments about Δf and Δt in order to rule out the possibility that the results of Experiment 2 were due to the inability to judge frequency change in tone sequences.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号