Memory for curvature of objects: Haptic touch vs. vision |
| |
Abstract: | The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic‐haptic (T‐T) and haptic‐visual (T‐V) discrimination of curvature in a short‐term memory paradigm, using 30‐second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial‐motor representation. Experiment 2 compared visual‐visual (V‐V) and visual‐haptic (V‐T) short‐term memory, again using 30‐second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra‐modal visual performance and cross‐modal performance were similar. Comparing the four modality conditions (inter‐modal V‐T, T‐V; intra‐modal V‐V, T‐T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2). |
| |
Keywords: | |
|
|