首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis
Authors:Anthony J. Bishara  Jiexiang Li  Thomas Nash
Affiliation:1. Department of Psychology, College of Charleston, South Carolina, USA;2. Department of Mathematics, College of Charleston, South Carolina, USA;3. Department of Computer Science, College of Charleston, South Carolina, USA
Abstract:When bivariate normality is violated, the default confidence interval of the Pearson correlation can be inaccurate. Two new methods were developed based on the asymptotic sampling distribution of Fisher's z′ under the general case where bivariate normality need not be assumed. In Monte Carlo simulations, the most successful of these methods relied on the (Vale & Maurelli, 1983, Psychometrika, 48, 465) family to approximate a distribution via the marginal skewness and kurtosis of the sample data. In Simulation 1, this method provided more accurate confidence intervals of the correlation in non-normal data, at least as compared to no adjustment of the Fisher z′ interval, or to adjustment via the sample joint moments. In Simulation 2, this approximate distribution method performed favourably relative to common non-parametric bootstrap methods, but its performance was mixed relative to an observed imposed bootstrap and two other robust methods (PM1 and HC4). No method was completely satisfactory. An advantage of the approximate distribution method, though, is that it can be implemented even without access to raw data if sample skewness and kurtosis are reported, making the method particularly useful for meta-analysis. Supporting information includes R code.
Keywords:confidence interval  kurtosis  non-normal  Pearson correlation  skewness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号