摘 要: | 非参数认知诊断分类方法非常适合课堂评估,其诊断结果采用0-1形式而缺乏概率化表征,不能精细地区分被试属性掌握程度的差异或变化,还缺乏可用于评价真实测验分类结果的信度和效度指标。要刻画被试属性掌握程度的差异,首要的问题是要为非参数认知诊断方法提供一种可以量化属性掌握概率的方法。针对此问题,基于二项分布和玻尔兹曼分布提出非参数认知诊断方法下诊断结果的概率化表征方法,并用于构建分类准确性和分类一致性指标。模拟研究与实测数据分析结果显示:概率化表征方法与非参数认知诊断方法的分类结果高度一致;概率化表征方法与认知诊断模型所得的属性掌握概率十分接近;概率化表征方法所得的属性(模式)掌握概率可用于计算属性(模式)分类准确性和分类一致性指标,在实际测验情景下可作为信度和效度指标,评价诊断结果的重测一致率和判准率。
|