首页 | 本学科首页   官方微博 | 高级检索  
     

贝叶斯多组比较——渐近测量不变性
引用本文:宋琼雅,张沥今,潘俊豪. 贝叶斯多组比较——渐近测量不变性[J]. 心理学探新, 2021, 0(1): 69-75
作者姓名:宋琼雅  张沥今  潘俊豪
作者单位:(中山大学心理学系,广州 510006)
基金项目:国家自然科学基金项目(31871128);教育部人文社会科学研究规划基金项目(18YJA190013)。
摘    要:在行为科学研究领域中,检验测量工具的测量不变性是进行群体差异比较的前提。目前,多组验证性因子分析(多组CFA)方法被广泛用于检验测量不变性,但是它对跨组等值的限制过于严格,在实际应用中常常存在大量局限。贝叶斯渐近测量不变性方法基于贝叶斯思想的优良特性,放宽了传统多组CFA方法对跨组差异的严格限制,避免了传统方法的问题,具有较高的应用价值。文章详细介绍了贝叶斯渐近测量不变性方法的原理及优势,同时通过实例展示了渐近测量不变性方法在Mplus软件中的具体分析过程。

关 键 词:贝叶斯方法  多组验证性因子分析  渐近测量不变性

Bayesian Multiple-group Analysis:Approximate Measurement Invariance
Song Qiongya,Zhang Lijin,Pan Junhao. Bayesian Multiple-group Analysis:Approximate Measurement Invariance[J]. Exploration of Psychology, 2021, 0(1): 69-75
Authors:Song Qiongya  Zhang Lijin  Pan Junhao
Affiliation:(Department of Psychology,Sun Yat-sen University,Guangzhou 510006)
Abstract:In the behavioral science,the comparison of multiple groups under the latent variable framework is popular.Measurement invariance(MI)is a pre-requisite for such multiple-group comparison.Multiple-group Confirmatory Factor Analysis(Multiple-group CFA)is the most commonly used approach for testing measurement invariance.In traditional multi-group CFA,strict invariant constraints are imposed on measurement parameters across groups.However,due to the complexity of modeling multi-group data,these strict constraints are unrealistic in real data analysis and can easily lead to poor model fitting.In fact,scalar invariance is almost unachievable in practice.The Bayesian approximate MI proposed by Muthén and Asparouhov(2013)compensates for these limitations to some extent by providing a zero-mean,small-variance prior for the differences in measurement parameters.It allows for small differences between groups and avoids the problems caused by strict restrictions in classical method,such as poor model fitting,awkward model modifications and higher Type I error rate.These strengths make this new approach a more suitable method in the practical research.This paper introduced the principles and advantages of the approximate MI approach by comparing it with the classical multi-group CFA method.Besides,a real data set was analyzed to demonstrate the validity and application of this approach using Mplus.
Keywords:Bayesian estimation  multiple-group structural equation modeling  approximate measurement invariance
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《心理学探新》浏览原始摘要信息
点击此处可从《心理学探新》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号