首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human machine interface design for continuous support of mode awareness during automated driving: An online simulation
Institution:1. Department of Human Factors and Vehicle Automation, Dutch Institute for Road Safety Research (SWOV), Bezuidenhoutseweg 62, 2594 AW The Hague, The Netherlands;2. Department of Human Centered Design, Faculty of Industrial Design, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
Abstract:In the transition towards higher levels of vehicle automation, one of the key concerns with regards to human factors is to avoid mode confusion, when drivers misinterpret the driving mode and therewith misjudge their own tasks and responsibility. To enhance mode awareness, a clear human centered Human Machine Interface (HMI) is essential. The HMI should support the driver tasks of both supervising the driving environment when needed and self-regulating their non-driving related activities (NDRAs). Such support may be provided by either presenting continuous information on automation reliability, from which the driver needs to infer what task is required, or by presenting continuous information on the currently required driving task and allowed NDRA directly. Additionally, it can be valuable to provide continuous information to support anticipation of upcoming changes in the automation mode and its associated reliability or required and allowed driver task(s). Information that could support anticipation includes the available time until a change in mode (i.e. time budget), information on the upcoming mode, and reasons for changing to the upcoming mode. The current work investigates the effects of communicating this potentially valuable information through HMI design. Participants received information from an HMI during simulated drives in a simulated car presented online (using Microsoft Teams) with an experimenter virtually accompanying and guiding each session. The HMI either communicated on automation reliability or on the driver task, and either included information supporting anticipation or did not include such information. Participants were thinking aloud during the simulated drives and reported on their experience and preferences afterwards. Anticipatory information supported understanding about upcoming changes without causing information overload or overreliance. Moreover, anticipatory information and information on automation reliability, and especially a combination of the two, best supported understandability and usability. Recommendations are provided for future work on facilitating supervision and NDRA self-regulation during automated driving through HMI design.
Keywords:HMI  Automated driving  Mode awareness  Human factors in vehicle automation  Think-aloud  NDRA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号