首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interference with reelin signaling in the lateral entorhinal cortex impairs spatial memory
Authors:Stranahan Alexis M  Salas-Vega Sebastian  Jiam Nicole T  Gallagher Michela
Institution:Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
Abstract:Entorhinal neurons receive extensive intracortical projections, and form the primary input to the hippocampus via the perforant pathway. The glutamatergic cells of origin for the perforant pathway are distinguished by their expression of reelin, a glycoprotein involved in learning and synaptic plasticity. The functional significance of reelin signaling within the entorhinal cortex, however, remains unexplored. To determine whether interrupting entorhinal reelin signaling might have consequences for learning and memory, we administered recombinant receptor-associated protein (RAP) into the lateral entorhinal cortex (LEC) of young Long-Evans rats. RAP prevents reelin from binding to its receptors, and we verified the knockdown of reelin signaling by quantifying the phosphorylation state of reelin’s intracellular signaling target, disabled-1 (DAB1). Effective knockdown of reelin signaling was associated with impaired performance in the hippocampus-dependent version of the water maze. Moreover, inhibition of reelin signaling induced a localized loss of synaptic marker expression in the LEC. These observations support a role for entorhinal reelin signaling in spatial learning, and suggest that an intact reelin signaling pathway is essential for synaptic integrity in the adult entorhinal cortex.
Keywords:Receptor-associated protein  Learning  Disabled-1  Synaptophysin
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号