Physical imagery: kinematic versus dynamic models. |
| |
Authors: | D L Schwartz |
| |
Affiliation: | Vanderbilt University, Nashville, TN 37203, USA. dan.schwartz@vanderbilt.edu |
| |
Abstract: | Physical imagery occurs when people imagine one object causing a change to a second object. To make inferences through physical imagery, people must represent information that coordinates the interactions among the imagined objects. The current research contrasts two proposals for how this coordinating information is realized in physical imagery. In the traditional kinematic formulation, imagery transformations are coordinated by geometric information in analog spatial representations. In the dynamic formulation, transformations may also be regulated by analog representations of force and resistance. Four experiments support the dynamic formulation. They show, for example, that without making changes to the spatial properties of a problem, dynamic perceptual information (e.g., torque) and beliefs about physical properties (e. g., viscosity) affect the inferences that people draw through imagery. The studies suggest that physical imagery is not so much an analog of visual perception as it is an analog of physical action. A simple model that represents force as a rate helps explain why inferences can emerge through imagined actions even though people may not know the answer explicitly. It also explains how and when perception, beliefs, and learning can influence physical imagery. |
| |
Keywords: | |
|
|