首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulus generalization of conditioned eyelid responses produced without cerebellar cortex: implications for plasticity in the cerebellar nuclei
Authors:Ohyama Tatsuya  Nores William L  Mauk Michael D
Institution:Department of Neurobiology and Anatomy, and Keck Center for the Neurobiology of Learning and Memory, University of Texas Medical School, Houston, Texas 77225, USA. tatsuya.ohyama@uth.tmc.edu
Abstract:In Pavlovian eyelid conditioning and adaptation of the vestibulo-ocular reflex, cerebellar cortex lesions fail to completely abolish previously acquired learning, indicating an additional site of plasticity in the deep cerebellar or vestibular nucleus. Three forms of plasticity are known to occur in the deep cerebellar nuclei: formation of new synapses, plasticity at existing synapses, and changes in intrinsic excitability. Only a cell-wide increase in excitability predicts that learning should generalize broadly from a training stimulus to other stimuli capable of supporting learning, whereas the alternatives predict that learning should be relatively specific to the training stimulus. Here we show that deep nucleus plasticity, as assessed by conditioned eyelid responses produced without input from the cerebellar cortex, is relatively specific to the training conditioned stimulus (CS). We trained rabbits to a tone or light CS with periorbital stimulation as the unconditioned stimulus (US), and pharmacologically disconnected the cerebellar cortex during a posttraining generalization test. The short-latency conditioned responses unmasked by this treatment showed strong decrement along the dimension of auditory frequency and did not generalize across stimulus modalities. These results cannot be explained solely by a cell-wide increase in the excitability of deep nucleus neurons, and imply that an input-specific mechanism in the deep cerebellar nucleus operates as well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号