首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling dynamic resource utilization in populations with unique constraints: preadolescents with and without Down syndrome
Authors:Ulrich Beverly D  Haehl Victoria  Buzzi Ugo H  Kubo Masayoshi  Holt Kenneth G
Institution:Division of Kinesiology, 401 Washtenaw Ave, University of Michigan, Ann Arbor 48109-2214, USA. bdulrich@umich.edu
Abstract:In this study we used a damped inverted pendulum and spring with an escapement function model to compare the global levels of stiffness and forcing used by 12 preadolescents with Down syndrome (DS) and 12 with typical development (TD). Participants walked overground at their self-selected speed and on a treadmill at speeds slower and faster than overground. Children with DS, who are characterized as hypotonic with reduced capacity for producing muscle force, exhibited significantly higher levels of stiffness and forcing (angular impulse) when walking on the treadmill and higher forcing but not stiffness overground, than children with TD. Both groups adapted to imposed speed increases similarly by increasing their global stiffness and angular impulse. We propose children with DS increased stiffness in order to overcome their hypotonia and joint laxity, thus, optimizing on stability, rather than metabolic efficiency. Higher angular impulse values for children with DS may reflect higher energy cost associated with increasing stiffness and their inherent biomechanical and physiological characteristics that reduce efficiency. We conclude that the inverted pendulum and spring with escapement function model is a useful tool for uncovering solutions to movement problems-solutions that reflect the dynamic resources of the individual and ones that are discovered, rather than prescribed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号