首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice
Authors:Quartermain D  deSoria V G  Kwan A
Affiliation:Department of Neurology, New York University School of Medicine, New York, New York 10016, USA. quartd01@popmail.med.nyu.edu
Abstract:Although a number of studies have shown that treatment with calcium channel antagonists (CCAs) can ameliorate impairments in learning and memory in aged animals, evidence for a general nootropic effect of CCAs in neurologically normal young adult animals is ambiguous. This study attempts to resolve some of this ambiguity by comparing the effects of several CCAs on retention of passive avoidance learning and acquisition and retention of appetitively motivated spatial discrimination learning in young adult mice. Animals were trained in a step through passive avoidance apparatus and, immediately after training, injected subcutaneously with different doses of nimodipine, nifedipine, amlodipine, flunarazine, diltiazem, or verapamil. Retention was tested 24 h after training. In the maze-learning task mice were treated with the same doses of the aforementioned CCAs immediately after a brief training session in a linear maze and retention was tested 24 h after training. The most effective dose of each agent in the maze-retention experiment was administered to additional groups of animals 1 h prior to training to determine the effects of CCAs on acquisition processes. The effects of central administration of CCAs were examined by intracerebroventricular injection of different doses of amlodipine immediately after passive avoidance training. Results showed (1) all peripherally administered drugs except verapamil facilitated retention of passive avoidance training in a dose-dependent manner, (2) all drugs dose dependently facilitated retention of linear maze learning, (3) all doses of the drugs (except verapamil) which facilitated maze retention also facilitated maze learning, and (4) central administration of the dihydropyridine amlodipine produced a dose-dependent facilitation of the retention of passive avoidance learning. These data indicate that drugs which block calcium channels can enhance retention of two different types of learning in mice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号