Instance-based learning: integrating sampling and repeated decisions from experience |
| |
Authors: | Gonzalez Cleotilde Dutt Varun |
| |
Affiliation: | Dynamic Decision Making Laboratory, Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. coty@cmu.edu |
| |
Abstract: | In decisions from experience, there are 2 experimental paradigms: sampling and repeated-choice. In the sampling paradigm, participants sample between 2 options as many times as they want (i.e., the stopping point is variable), observe the outcome with no real consequences each time, and finally select 1 of the 2 options that cause them to earn or lose money. In the repeated-choice paradigm, participants select 1 of the 2 options for a fixed number of times and receive immediate outcome feedback that affects their earnings. These 2 experimental paradigms have been studied independently, and different cognitive processes have often been assumed to take place in each, as represented in widely diverse computational models. We demonstrate that behavior in these 2 paradigms relies upon common cognitive processes proposed by the instance-based learning theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003) and that the stopping point is the only difference between the 2 paradigms. A single cognitive model based on IBLT (with an added stopping point rule in the sampling paradigm) captures human choices and predicts the sequence of choice selections across both paradigms. We integrate the paradigms through quantitative model comparison, where IBLT outperforms the best models created for each paradigm separately. We discuss the implications for the psychology of decision making. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|