首页 | 本学科首页   官方微博 | 高级检索  
     


A general solution for a class of weakly constrained linear regression problems
Authors:Jos M. F. ten Berge
Affiliation:(1) University of Groningen, The Netherlands;(2) Vakgroep Psychologie, Rijksuniversiteit Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands
Abstract:This paper contains a globally optimal solution for a class of functions composed of a linear regression function and a penalty function for the sum of squared regression weights. Global optimality is obtained from inequalities rather than from partial derivatives of a Lagrangian function. Applications arise in multidimensional scaling of symmetric or rectangular matrices of squared distances, in Procrustes analysis, and in ridge regression analysis. The similarity of existing solutions for these applications is explained by considering them as special cases of the general class of functions addressed.The author is obliged to Henk Kiers and Willem Heiser for helpful comments.
Keywords:squared distance scaling  Procrustes analysis  ridge regression
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号