首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nonblurred regions show priority for gaze direction over spatial blur
Abstract:The human eye continuously forms images of our 3D environment using a finite and dynamically changing depth of focus. Since different objects in our environment reside at different depth planes, the resulting retinal images consist of both focused and spatially blurred objects concurrently. Here, we wanted to measure what effect such a mixed visual diet may have on the pattern of eye movements. For that, we have constructed composite stimuli, each containing an intact photograph and several progressively blurred versions of it, all arranged in a 3?×?3 square array and presented simultaneously as a single image. We have measured eye movements for 7 such composite stimuli as well as for their corresponding root mean square (RMS) contrast-equated versions to control for any potential contrast variations as a result of the blurring. We have found that when observers are presented with such arrays of blurred and nonblurred images they fixate significantly more frequently on the stimulus regions that had little or no blur at all (p?<?.001). A similar pattern of fixations was found for the RMS contrast-equated versions of the stimuli indicating that the observed distributions of fixations is not simply the result of variations in image contrasts due to spatial blurring. Further analysis revealed that, during each 5 second presentation, the image regions containing little or no spatial blur were fixated first while other regions with larger amounts of blur were fixated later, if fixated at all. The results contribute to the increasing list of stimulus parameters that affect patterns of eye movements during scene perception.
Keywords:Spatial blur  Depth of focus  Blur gradients  Natural image statistics  Eye movements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号