首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulation of the lateral geniculate,superior colliculus,or visual cortex is sufficient for eyeblink conditioning in rats
Authors:Hunter E Halverson  Erin M Hubbard  John H Freeman
Institution:Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
Abstract:The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN), superior colliculus (SC), pretectal nuclei, and visual cortex (VCTX) as reported by Koutalidis and colleagues in an earlier paper. The following experiments examined whether electrical stimulation of neural structures in the putative visual CS pathway can serve as a sufficient CS for eyeblink conditioning in rats. Unilateral stimulation of the ventral LGN (Experiment 1), SC (Experiment 2), or VCTX (Experiment 3) was used as a CS paired with a periorbital shock unconditioned stimulus. Stimulation was delivered to the hemisphere contralateral to the conditioned eye. Rats in all experiments were given five 100-trial sessions of paired or unpaired eyeblink conditioning with the stimulation CS followed by three paired sessions with a light CS. Stimulation of each visual area when paired with the unconditioned stimulus supported acquisition of eyeblink conditioned responses (CRs) and substantial savings when switched to a light CS. The results provide evidence for a unilateral parallel visual CS pathway for eyeblink conditioning that includes the LGN, SC, and VCTX inputs to the pontine nuclei.Pavlovian eyeblink (eyelid closure and nictitating membrane movement) conditioning is established by pairing a conditioned stimulus (CS), usually a tone or light, with an unconditioned stimulus (US) that elicits the eyeblink reflex. The eyeblink conditioned response (CR) emerges over the course of paired training, occurs during the CS, and precedes the US (Gormezano et al. 1962; Schneiderman et al. 1962). Neurobiological investigations of Pavlovian eyeblink conditioning have primarily focused on the cerebellum, which is the site of memory formation and storage (Thompson 2005). The anterior interpositus nucleus is necessary for acquisition and retention of the eyeblink CR (Lavond et al. 1985; Krupa and Thompson 1997; Freeman Jr. et al. 2005; Thompson 2005; Ohyama et al. 2006). Lobule HVI and the anterior lobe of the cerebellar cortex (lobules I–V) contribute to acquisition, retention, and timing of the CR (McCormick and Thompson 1984; Perrett et al. 1993; Perrett and Mauk 1995; Attwell et al. 1999, 2001; Medina et al. 2000; Nolan and Freeman Jr. 2005; Nolan and Freeman 2006). The brainstem nuclei that comprise the proximal ends of the CS and US input pathways to the cerebellum have also been identified.The pontine nuclei (PN) and inferior olive (IO) receive CS and US information, respectively, and are the primary sensory relays into the interpositus nucleus and cerebellar cortex (Thompson 2005). Conditioned stimulus information converges in the PN, which receives projections from lower brainstem, thalamus, and cerebral cortex (Glickstein et al. 1980; Brodal 1981; Schmahmann and Pandya 1989; Knowlton et al. 1993; Campolattaro et al. 2007). The lateral pontine nuclei (LPN) are the sources of auditory CS information projected into the cerebellum. Lesions of the LPN block CR retention to a tone CS, but have no effect on CRs to a light CS (Steinmetz et al. 1987). Thus, CS inputs from different sensory modalities may be segregated at the level of the PN. Neurons in the PN project CS information into the contralateral cerebellum via mossy fibers in the middle cerebellar peduncle that synapse primarily on granule cells in the cerebellar cortex and on neurons in the deep nuclei (Bloedel and Courville 1981; Brodal 1981; Steinmetz and Sengelaub 1992). Stimulation of the PN acts as a supernormal CS supporting faster CR acquisition than conditioning with peripheral stimuli (Steinmetz et al. 1986, 1989; Rosen et al. 1989; Steinmetz 1990; Tracy et al. 1998; Freeman Jr. and Rabinak 2004). The primary focus of these experiments was to investigate the most proximal components of the CS pathway in eyeblink conditioning. There has been less emphasis on identifying the critical CS pathways that project information to the PN.Recent studies using lesions, inactivation, stimulation, and neural tract tracing have provided evidence that the auditory CS pathway that is necessary for acquisition and retention of eyeblink conditioning is comprised of converging inputs to the medial auditory thalamic nuclei (MATN), and a direct ipsilateral projection from the MATN to the PN (Halverson and Freeman 2006; Campolattaro et al. 2007; Freeman et al. 2007; Halverson et al. 2008). Unilateral lesions of the MATN, contralateral to the conditioned eye, block acquisition of eyeblink CRs to a tone CS but have no effect on conditioning with a light CS (Halverson and Freeman 2006). Inactivation of the MATN with muscimol blocks acquisition and retention of CRs to an auditory CS, and decreases metabolic activity in the PN (Halverson et al. 2008). The MATN has a direct projection to the PN and stimulation of the MATN supports rapid CR acquisition (Campolattaro et al. 2007). Our current model of the auditory CS pathway consists of converging inputs to the MATN, and direct unilateral thalamic input to the PN (Halverson et al. 2008).Less work has been done to identify the visual CS pathway necessary for eyeblink conditioning. A possible parallel visual CS pathway has been hypothesized, which includes parallel inputs to different areas of the PN from the lateral geniculate nucleus (LGN), superior colliculus (SC), visual cortex (VCTX), and pretectal nuclei (Koutalidis et al. 1988). In the Koutalidis et al. study, lesions of the LGN, SC, VCTX, or pretectal nuclei alone had only a partial effect on CR acquisition with a light CS. Lesions of any two of these structures together produced a more severe impairment on acquisition and combined lesions of all of these areas completely blocked CR acquisition to a light CS (Koutalidis et al. 1988). Each visual area investigated in the Koutalidis et al. study has a direct projection to the PN that could be important for eyeblink conditioning. The ventral LGN projects to the medial, and to a lesser extent, the lateral PN (Graybiel 1974; Wells et al. 1989). The superficial, intermediate, and deep layers of SC send projections to both the dorsomedial and dorsolateral PN (Redgrave et al. 1987; Wells et al. 1989). The VCTX has a direct projection to the rostral and lateral portions of the PN (Glickstein et al. 1972; Baker et al. 1976; Mower et al. 1980; Wells et al. 1989). The pretectal nuclei also have a direct projection to both the medial and lateral PN (Weber and Harting 1980; Wells et al. 1989). However, stimulation of the anterior pretectal nucleus is not an effective CS for eyeblink conditioning (Campolattaro et al. 2007). The failure to establish conditioning with stimulation of the anterior pretectal nucleus as a CS suggests that there may be differences in the efficacy of the various visual inputs to the PN for cerebellar learning. The following experiments investigated the sufficiency of stimulation of the LGN, SC, or primary VCTX as a CS for eyeblink conditioning in rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号