首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reprogramming of Interceptive Actions: Time Course of Temporal Corrections for Unexpected Target Velocity Change
Abstract:The authors investigated the time course of reprogramming of the temporal dimension of motor acts in a task requiring interception of a moving target. The target moved at a constant velocity on a monitor screen; in part of the trials, target velocity was unexpectedly increased or decreased. Those modifications were produced at different moments during target displacement, leaving periods of time from 100 to 800 ms for movement timing correction. The authors assessed the effects of probability of target velocity change (25% vs. 50%), uncertainty about direction of velocity change (unidirectional vs. bidirectional), and direction of velocity change (increase vs. decrease). Analysis of 24 participants' arm acceleration showed that fast adjustments took place between 100 and 200 ms after target velocity change similarly for all uncertainty conditions. Analysis of temporal error indicated that the combination of high probability of target velocity change and certainty on direction of target velocity change led to the most successful movement timing reprogramming. For the other experimental conditions, temporal accuracy was still poor when a period of 800 ms was available for correction. Movement reprogramming was a continuous process that was more efficient for target velocity increase than for target velocity decrease.
Keywords:continuous processes  interception  movement correction  movement reprogramming  visuomotor control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号