首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mass Perturbation of a Body Segment: 2. Effects on Interlimb Coordination
Abstract:The shifts in relative phase that are observed when rhythmically coordinated limbs are submitted to asymmetric mass perturbations have typically been attributed to the induced eigenfrequency difference ($DL$oM) between the limbs. Modeling the moving limbs as forced linear oscillators, however, reveals that asymmetric mass perturbations may induce a difference not only in eigenfrequency (i.e., $DL$oM $$ 0) but also in the covarying low-frequency control gains (i.e., $DLk $$ 0). Because the inverse of the lowfrequency control gain (k) reflects the level of muscular torque (input) required for a particular displacement from equilibrium (output), asymmetric mass perturbations may result in an imbalance in the muscular torques required for task performance (related to $DLk $$ 0). Thus, it is possible that the effects attributed to $DL$oM were in fact mediated by $DLk. In 2 experiments, the authors manipulated $DLk and $DL$oM separately by applying mass perturbations to the lower legs of 9 participants. The relative phasing between the legs was not affected by $DLk, but manipulation of $DL$oM (while $DLk remained approximately 0) induced systematic relative phase shifts that were more pronounced for antiphase than for in-phase coordination. That indication that the coordination dynamics is indeed influenced by an imbalance in eigenfrequency is discussed vis-à-vis the question of how such a merely peripheral property may affect the underlying coordination process.
Keywords:eigenfrequency  interlimb coordination  low-frequency control gain  mass perturbation  relative phase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号