Lightness differences and the perceived segregation of regions and populations |
| |
Authors: | Jacob Beck Norma Graham Anne Sutter |
| |
Affiliation: | 1. Department of Psychology, University of Oregon, 97403-1227, Eugene, OR 2. Columbia University, New York, New York
|
| |
Abstract: | A striking finding reported by Beck, Sutter, and Ivry (1987) was that, in textures composed of regions differentiated by the arrangement (checks and stripes) of two texture elements (light and dark squares), a large lightness difference between the squares could fail to yield segregation between the regions, whereas a smaller lightness difference could sometimes yield strong segregation. In the experiments reported here, we compared the segregation of striped and checked arrangements of light and dark squares into regions with the segregation of two randomly interspersed populations of light and dark squares into subpopuiations. Perceived lightnesses are the same for a given set of squares, whether they are arranged in regions or in intermixed populations. Perceived population segregation is approximately a single-valued function of the lightness differences of the squares, but perceived region segregation is not. The reason for the difference between population segregation and region segregation may be that region segregation is mediated by detectors’ having large oriented receptive fields (large bar detectors) that are sensitive to the fundamental spatial frequency and orientation of the texture region as defined by the arrangement of the squares (Beck et al., 1987; Sutter, Beck, & Graham, 1989). These detectors cannot be responsible for population segregation, because the light and dark squares are distributed randomly throughout these patterns and therefore do not define a consistent arrangement of any particular spatial frequency or orientation. The light and dark squares in the population patterns fall equally on excitatory and inhibitory regions of large bar detectors. A plausible explanation for population segregation is to suppose that the segregation is the result of similarity grouping of the light and dark squares. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|