首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach
Authors:Karl Christoph Klauer
Affiliation:1.Institut für Psychologie,Universit?t Freiburg,Freiburg,Germany
Abstract:Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into account and to assess parameter correlations. The model is estimated using Bayesian methods with weakly informative hyperprior distribution and a Gibbs sampler based on two steps of data augmentation. Estimation, model checks, and hypotheses tests are discussed. The new method is illustrated using a real data set, and its performance is evaluated in a simulation study.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号