首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Longitudinal study of perception of structured optic flow and random visual motion in infants using high‐density EEG
Authors:Seth B Agyei  Magnus Holth  FR
Abstract:Electroencephalogram (EEG) was used in infants at 3–4 months and 11–12 months to longitudinally study brain electrical activity as the infants were exposed to structured forwards and reversed optic flow, and non‐structured random visual motion. Analyses of visual evoked potential (VEP) and temporal spectral evolution (TSE, time‐dependent amplitude changes) were performed on EEG data recorded with a 128‐channel sensor array. VEP results showed infants to significantly differentiate between the radial motion conditions, but only at 11–12 months where they showed shortest latency for forwards optic flow and longest latency for random visual motion. When the TSE results of the motion conditions were compared with those of a static non‐flow dot pattern, infants at 3–4 and 11–12 months both showed significant differences in induced activity. A decrease in amplitudes at 5–7 Hz was observed as desynchronized theta‐band activity at both 3–4 and 11–12 months, while an increase in amplitudes at 9–13 Hz was observed as synchronized alpha‐band activity only at 11–12 months. It was concluded that brain electrical activities related to visual motion perception change during the first year of life, and these changes can be observed both in the VEP and induced activities of EEG. With adequate neurobiological development and locomotor experience infants around 1 year of age rely, more so than when they were younger, on structured optic flow and show a more adult‐like specialization for motion where faster oscillating cell assemblies have fewer but more specialized neurons, resulting in improved visual motion perception.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号