Abstract: | Acquisition of discrete-trial lever-press avoidance learning was studied in three experiments. Experiment I compared a new training procedure, which produces rates of lever-press avoidance learning comparable to those obtained in shuttle boxes, with a “conventional”, less efficient training procedure. A factorial design was used to compare continuous versus intermittent shock and a long-variable versus a short-fixed signal-shock interval. Learning was best in the groups trained with the long and variable interval and poorest in those trained with the short and fixed interval. Type of shock had no effect. Experiment II separated the effects of duration from those of variability of the signal-shock interval. Fixed and variable intervals of 10 and 60 sec were tested and duration was the only significant factor. Experiment III addressed the effect of the differential opportunity to avoid provided by long signal-shock intervals by varying this interval from 10 to 60 sec in 10-sec steps. Only the 10-sec group showed slow acquisition relative to the others. Analysis of avoidance response latencies showed that the distributions for all groups were positively skewed and that skewness increased with increasing duration of the signal-shock interval. At intervals longer than 20 sec, the animals made progressively less use of their increased opportunity to respond. The data do not support the opportunity-to-respond interpretation of the effects of duration of signal-shock interval and suggest that some type of inhibitory process may block lever-press avoidance learning at intervals as short as 10 sec. The significance of these findings for species-specific defense reaction and preparedness theories was emphasized. |