首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs
Authors:Jaume Arnau  Roser Bono  María J Blanca  Rebecca Bendayan
Institution:1. Department of Methodology of the Behavioral Sciences, Faculty of Psychology, University of Barcelona, Passeig de la Vall d’Hebron, 171, 08035, Barcelona, Spain
2. University of Malaga, Malaga, Spain
Abstract:Using a Monte Carlo simulation and the Kenward–Roger (KR) correction for degrees of freedom, in this article we analyzed the application of the linear mixed model (LMM) to a mixed repeated measures design. The LMM was first used to select the covariance structure with three types of data distribution: normal, exponential, and log-normal. This showed that, with homogeneous between-groups covariance and when the distribution was normal, the covariance structure with the best fit was the unstructured population matrix. However, with heterogeneous between-groups covariance and when the pairing between covariance matrices and group sizes was null, the best fit was shown by the between-subjects heterogeneous unstructured population matrix, which was the case for all of the distributions analyzed. By contrast, with positive or negative pairings, the within-subjects and between-subjects heterogeneous first-order autoregressive structure produced the best fit. In the second stage of the study, the robustness of the LMM was tested. This showed that the KR method provided adequate control of Type I error rates for the time effect with normally distributed data. However, as skewness increased—as occurs, for example, in the log-normal distribution—the robustness of KR was null, especially when the assumption of sphericity was violated. As regards the influence of kurtosis, the analysis showed that the degree of robustness increased in line with the amount of kurtosis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号