首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulating the impact during human jumping by means of a 4-degrees-of-freedom model with time-dependent properties
Authors:Fritz M  Peikenkamp K
Institution:Institut für Arbeitsphysiologie an der Universit?t Dortmund, Ardeystrasse 67, D-44139 Dortmund, Germany. fritz@arb-phys.uni-dortmund.de
Abstract:The authors simulated the vertical movements of a jumper and the force time courses by means of a 4-degrees-of-freedom model consisting of 4 masses, springs, and dampers. Of the motions simulated, only that of the mass imitating the trunk corresponded to the measured data. The best fit to the measured force curves were obtained in the simulation in which time-dependent model parameters were used. From the results, the authors concluded that at the beginning of the landing, a jumper behaves like a 2-mass model in which the leg segments (thighs, shanks, and feet) effectively combine into 1 mass. After approximately 60 ms, the connections between the leg segments become more compliant and the jumper behaves like a 4-mass model with a soft coupling between the leg segments. The process is equivalent to an increase of the degrees of freedom of the movements. At the end of the ground contact phase during hopping, the jumper has to contract the muscles in order to reach the envisaged jump height. In the model, that contraction could not be satisfactorily simulated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号