首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Model of visual adaptation and contrast detection
Authors:George Sperling
Institution:1. Bell Telephone Laboratories, Inc., 07974, Murray Hill, New Jersey
Abstract:A three-component model of spatial vision is proposed, consisting of (1) a feedback stage, (2) a feedforward stage, (3) a threshold detector. The components correspond to physiological processes; in particular, the feedforward control signal corresponds to the “surround’s” signal in the receptive fields of retinal ganglion cells. The model makes appropriate qualitative predictions of: (l)a square-root law (Δl ∞ l1/2) for detection at low luminances, (2) a Weber law (Δl ∞ l) at high luminances, (3) additivity of threshold masking effects at high background luminances, (4) receptive fields that, in the dark, consist only of an excitatory center and that, in the light, also contain inhibitory surrounds, (5) the variation of spatial characteristics of receptive fields depending on the temporal characteristic of the test stimulus used to measure them, (6) the subjective appearance of Mach bands, (7) sine-wave contrast-threshold transfer functions, (8) the frequent failure of disk-detection experiments to demonstrate inhibitory surrounds, and (9) various second-order threshold effects, such as reduced spatial integration for long-duration stimuli, reduced temporal integration for large-area stimuli, and the increased effect of background luminance on the detection of large-area stimuli. Predictions are improved by assuming there exist various sizes of receptive fields that determine thresholds jointly.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号