首页 | 本学科首页   官方微博 | 高级检索  
     


Visual working memory load disrupts the space‐based attentional guidance of target selection
Authors:Nick Berggren  Martin Eimer
Abstract:During visual search, the selection of target objects is guided by stored representations of target‐defining features (attentional templates). It is commonly believed that such templates are maintained in visual working memory (WM), but empirical evidence for this assumption remains inconclusive. Here, we tested whether retaining non‐spatial object features (shapes) in WM interferes with attentional target selection processes in a concurrent search task that required spatial templates for target locations. Participants memorized one shape (low WM load) or four shapes (high WM load) in a sample display during a retention period. On some trials, they matched them to a subsequent memory test display. On other trials, a search display including two lateral bars in the upper or lower visual field was presented instead, and participants reported the orientation of target bars that were defined by their location (e.g., upper left or lower right). To assess the efficiency of attentional control under low and high WM load, EEG was recorded and the N2pc was measured as a marker of attentional target selection. Target N2pc components were strongly delayed when concurrent WM load was high, indicating that holding multiple object shapes in WM competes with the simultaneous retention of spatial attentional templates for target locations. These observations provide new electrophysiological evidence that such templates are maintained in WM, and also challenge suggestions that spatial and non‐spatial contents are represented in separate independent visual WM stores.
Keywords:event‐related potentials  memory load  N2pc component  visual attention  visual working memory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号