首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The linkage between stimulus frequency and covert peak areas as it relates to monaural localization.
Authors:M E Rogers  R A Butler
Institution:Department of Surgery, University of Chicago, IL.
Abstract:Head-related transfer functions for differently centered narrow noise bands were obtained on 6 subjects. Derived from these measurements were covert peak areas (CPAs), defined as the spatial constellation of loudspeakers that generates maximal sound pressure at the entrance of the ear canal for specific bands of frequency. On the basis of previous data, we proposed that different frequency bands served as important spectral cues for monaural localization of sounds from different loci and that location judgments were directed toward the CPAs associated with the different bands. In the first study, the stimuli were bandpass filtered so that they contained only those frequencies whose associated CPAs occupied either the monaural listener's "upper" or "lower" spatial regions. Loudspeakers, separated by 15 degrees, were stationed in the left hemifield, ranging from 0 degree to 180 degrees azimuth and -45 degrees to 60 degrees elevation. Subjects reported the loudspeaker from which the sound appeared to originate. Judgments of the sound's elevation were in general accord with the CPAs associated with the different frequency segments. In the second study, monaural localization tests were administered in which different 2.0-kHz-wide frequency bands linked with specific CPAs were notch filtered from a 3.5-kHz highpass noise band. For the control condition, the highpass noise was unfiltered. The data demonstrated that filtering a frequency segment linked with specific CPAs resulted in significantly fewer location responses directed toward that particular spatial region. These results demonstrate in greater detail the relation between the directional filtering properties of the pinna and monaural localization of sound.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号