首页 | 本学科首页   官方微博 | 高级检索  
     

计算精神病学:抑郁症研究和临床应用的新视角
引用本文:区健新,吴寅,刘金婷,李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127. DOI: 10.3724/SP.J.1042.2020.00111
作者姓名:区健新  吴寅  刘金婷  李红
作者单位:1.深圳大学心理学院;2. 深圳市情绪与社会认知科学重点实验室;3. 深圳市神经科学研究院, 深圳 518060
基金项目:国家自然科学基金(31671150, 31600928);广东省普通高校创新团队建设项目(2015KCXTD009);广东省省级基础研究及应用研究重大项目(2016KZDXM009);深圳市基础研究布局项目(JCYJ20150729104249783, JCYJ20170818110103216, JCYJ20170412164413575);深圳市孔雀计划项目(KQTD2015033016104926)
摘    要:抑郁症是一种复杂而异质的精神疾病,给全球带来沉重的疾病负担。尽管基于症状学的诊断方法已被广泛应用于各领域,但这种方法并不利于病理机制的探讨。另外,该诊断方法预测效度较低,导致其难以准确评估和比较各种治疗方案的疗效。计算精神病学方法则能通过理论驱动和数据驱动两种互补的方法解决上述问题,从而提高对抑郁症的认识、预防和治疗。理论驱动方法基于经验知识或假设,利用计算建模方法对数据进行多水平分析;数据驱动方法则基于机器学习算法分析高维数据,提高抑郁症诊断和预测的准确性,进而提高治疗的精准度。理论驱动和数据驱动方法的发展与结合,以及人才和资源的整合,将会更有效地推进抑郁症的防治。

关 键 词:抑郁症  计算精神病学  计算模型  机器学习  诊断  治疗
收稿时间:2019-01-29

Computational psychiatry: A new perspective on research and clinical applications in depression
OU Jianxin,WU Yin,LIU Jinting,LI Hong. Computational psychiatry: A new perspective on research and clinical applications in depression[J]. Advances In Psychological Science, 2020, 28(1): 111-127. DOI: 10.3724/SP.J.1042.2020.00111
Authors:OU Jianxin  WU Yin  LIU Jinting  LI Hong
Affiliation:1. School of Psychology, Shenzhen University;2. Shenzhen Key Laboratory of Affective and Social Cognitive Science;3. Shenzhen Institute of Neuroscience, Shenzhen 518060, China
Abstract:Depression, a complex and heterogeneous mental disorder, leads to great global burdens of disease. Although diagnosis based on nosology is broadly used in several domains, it is still unable to direct the exploration of pathological mechanism of depression. In addition, several treatments developed by this diagnosis have poor outcomes due to its low prediction validity. Computational approaches to psychiatry remedy those limitations and help to improve understanding, prediction and treatment for depression by two complementary approaches: data-driven and theory-driven. Theory-driven approaches apply models to multiple levels of analysis from the prior knowledge or hypojournal of depression. Data-driven approaches, however, adopt machine-learning methods to analyze high-dimensional data to improve the diagnostic and predictive accuracies of depression, and eventually, promote the treatment effects. With the development and combination of these two approaches as well as the integration of resources, it is promising to cure depression and prevent it from occurrence.
Keywords:depression  computational psychiatry  computational models  machine learning  diagnosis  treatment  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《心理科学进展》浏览原始摘要信息
点击此处可从《心理科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号