On Neat Reducts of Algebras of Logic |
| |
Authors: | Ahmed Tarek Sayed Németi Istvan |
| |
Affiliation: | (1) Department Of Mathematics Faculty Of Science, Cairo University, Giza, Egypt;(2) Mathematical Institute, The Hungarian Academy Of Science, Pf. 127, 1364 Budapest, Hungary |
| |
Abstract: | SC, CA, QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras, and quasipolyadic equality algebras of dimension , respectively. Generalizing a result of Németi on cylindric algebras, we show that for K {SC, CA, QA, QEA} and ordinals < , the class NrK of -dimensional neat reducts of -dimensional K algebras, though closed under taking homomorphic images and products, is not closed under forming subalgebras (i.e. is not a variety) if and only if > 1.From this it easily follows that for 1 < < , the operation of forming -neat reducts of algebras in K does not commute with forming subalgebras, a notion to be made precise.We give a contrasting result concerning Halmos' polyadic algebras (with and without equality). For such algebras, we show that the class of infinite dimensional neat reducts forms a variety.We comment on the status of the property of neat reducts commuting with forming subalgebras for various reducts of polyadic algebras that are also expansions of cylindric-like algebras. We try to draw a borderline between reducts that have this property and reducts that do not.Following research initiated by Pigozzi, we also emphasize the strong tie that links the (apparently non-related) property of neat reducts commuting with forming subalgebras with proving amalgamation results in cylindric-like algebras of relations. We show that, like amalgamation, neat reducts commuting with forming subalgebras is another algebraic expression of definability and, accordingly, is also strongly related to the well-known metalogical properties of Craig, Beth and Robinson in the corresponding logics. |
| |
Keywords: | algebraic logic cylindric algebras substitution algebras quasipolyadic algebras neat reducts neat embeddings amalgamation |
本文献已被 SpringerLink 等数据库收录! |
|