首页 | 本学科首页   官方微博 | 高级检索  
     


Making Probabilistic Relational Categories Learnable
Authors:Wookyoung Jung  John E. Hummel
Affiliation:Department of PsychologyUniversity of Illinois
Abstract:Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate the learning of such categories. Experiment 1 showed that changing the task from a category‐learning task to choosing the “winning” object in each stimulus greatly facilitated participants' ability to learn probabilistic relational categories. Experiments 2 and 3 further investigated the mechanisms underlying this “who's winning” effect. Experiment 4 replicated and generalized the “who's winning” effect with more natural stimuli. Together, our findings suggest that people learn relational concepts by a process of intersection discovery akin to schema induction, and that any task that encourages people to discover a higher order relation that remains invariant over members of a category will facilitate the learning of putatively probabilistic relational concepts.
Keywords:Relational category learning  Family resemblance  Higher order relations  Relational invariants  Who's winning task
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号