首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Classification objects, ideal observers & generative models
Authors:Cheryl Olman  Daniel Kersten
Institution:a Graduate Program in Neuroscience, University of Minnesota, USA
b Department of Psychology, University of Minnesota, USA
Abstract:A successful vision system must solve the problem of deriving geometrical information about three-dimensional objects from two-dimensional photometric input. The human visual system solves this problem with remarkable efficiency, and one challenge in vision research is to understand how neural representations of objects are formed and what visual information is used to form these representations. Ideal observer analysis has demonstrated the advantages of studying vision from the perspective of explicit generative models and a specified visual task, which divides the causes of image variations into the separate categories of signal and noise. Classification image techniques estimate the visual information used in a task from the properties of “noise” images that interact most strongly with the task. Both ideal observer analysis and classification image techniques rely on the assumption of a generative model. We show here how the ability of the classification image approach to understand how an observer uses visual information can be improved by matching the type and dimensionality of the model to that of the neural representation or internal template being studied. Because image variation in real world object tasks can arise from both geometrical shape and photometric (illumination or material) changes, a realistic image generation process should model geometry as well as intensity. A simple example is used to demonstrate what we refer to as a “classification object” approach to studying three-dimensional object representations.
Keywords:Classification image  Ideal observer  Reverse correlation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号