首页 | 本学科首页   官方微博 | 高级检索  
     


Motor maps and synergies
Authors:Neilson Peter D  Neilson Megan D
Affiliation:Neuroengineering Laboratory, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney 2052, Australia. p.neilson@unsw.edu.au
Abstract:Consider the process of raising and lowering the arm in the sagittal plane. Different parts of different muscles operate over different sectors of the angular range. How and why does the nervous system implement this differential muscle activation according to joint angle? We contend that such control depends on the adaptive formation of motor maps. These solve the problem of redundancy in the musculoskeletal system by connecting a relatively small number of cortical columns in the motor cortex to a large number of alpha motor neuron pools. We argue that motor maps are formed such that each functional muscle is activated in proportion to its moment arm about the movement. Because of this the required agonist and antagonist turning forces are generated with a minimum demand for metabolic energy. We know from biomechanical principles that, at any given posture, those muscle fibres that change length most in response to a small joint-angle change are those with the greatest moment arm. Likewise those that change least have the smallest. By establishing a model of the polynomial relationships between the lengths of functional muscles l and the corresponding changes in joint angles theta, the nervous system can generate signals partial differentiallj/ partial differentialthetai (where lj is the length of the jth functional muscle and thetai is the magnitude of the ith elemental movement). These signals create motor maps by modulating the gains of descending motor pathways. As a result, functional muscles are activated in proportion to their moment arms. This reduces the demand for metabolic energy to a minimum. Since moment arms change with joint angle, it also accounts for the experimental observations above. Such motor mapping effectively provides a minimum energy "wired-in" synergy. Established in utero, motor maps are the first stage of synergy formation and provide the basis for the development of subsequent task-dependent synergies.
Keywords:Degrees of freedom   Minimum energy   Moment arm   Musculoskeletal system   Optimisation   Redundancy   Synergy formation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号