首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation for the multiple factor model when data are missing
Authors:Carl Finkbeiner
Affiliation:(1) Invorydale Technical Center, 3W76, The Procter & Gamble Co., 45217 Cincinnati, Ohio
Abstract:A maximum likelihood method of estimating the parameters of the multiple factor model when data are missing from the sample is presented. A Monte Carlo study compares the method with 5 heuristic methods of dealing with the problem. The present method shows some advantage in accuracy of estimation over the heuristic methods but is considerably more costly computationally.This paper is based on the author's doctoral dissertation at the Department of Psychology, University of Illinois at Urbana-Champaign. The author gratefully acknowledges the aid of Drs. Robert Bohrer, Charles Lewis, Robert Linn, Maurice Tatsuoka, and Ledyard Tucker.
Keywords:factor analysis  missing data
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号