首页 | 本学科首页   官方微博 | 高级检索  
     


Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice
Authors:Lambert Talley J  Fernandez Stephanie M  Frick Karyn M
Affiliation:Department of Psychology, Yale University, New Haven, CT 06520, USA.
Abstract:Environmental enrichment paradigms that incorporate cognitive stimulation, exercise, and motor learning benefit memory and synaptic plasticity across the rodent lifespan. However, the contribution each individual element of the enriched environment makes to enhancing memory and synaptic plasticity has yet to be delineated. Therefore, the current study tested the effects of three of these elements on memory and synaptic protein levels. Young female C57BL/6 mice were given 3h of daily exposure to either rodent toys (cognitive stimulation) or running wheels (exercise), or daily acrobatic training for 6 weeks prior to and throughout behavioral testing. Controls were group housed, but did not receive enrichment. Spatial working and reference memory were tested in a water-escape motivated radial arm maze. Levels of the presynaptic protein synaptophysin were then measured in frontoparietal cortex, hippocampus, striatum, and cerebellum. Exercise, but not cognitive stimulation or acrobat training, improved spatial working memory relative to controls, despite the fact that both exercise and cognitive stimulation increased synaptophysin levels in the neocortex and hippocampus. These data suggest that exercise alone is sufficient to improve working memory, and that enrichment-induced increases in synaptophysin levels may not be sufficient to improve working memory in young females. Spatial reference memory was unaffected by enrichment. Acrobat training had no effect on memory or synaptophysin levels, suggesting a minimal contribution of motor learning to the mnemonic and neuronal benefits of enrichment. These results provide the first evidence that different elements of the enriched environment have markedly distinct effects on spatial memory and synaptic alterations.
Keywords:Radial arm maze   Working memory   Reference memory   Mouse   Exercise   Motor skill learning
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号