Some modifications of Scott's theorem on injective spaces |
| |
Authors: | Andrzej W. Jankowski |
| |
Affiliation: | (1) Institute of Mathematics, University of Warsaw, Poland |
| |
Abstract: | D. Scott in his paper [5] on the mathematical models for the Church-Curry -calculus proved the following theorem.A topological space X. is an absolute extensor for the category of all topological spaces iff a contraction of X. is a topological space of Scott's open sets in a continuous lattice.In this paper we prove a generalization of this theorem for the category of , -closure spaces. The main theorem says that, for some cardinal numbers , , absolute extensors for the category of , -closure spaces are exactly , -closure spaces of , -filters in , >-semidistributive lattices (Theorem 3.5).If = and = we obtain Scott's Theorem (Corollary 2.1). If = 0 and = we obtain a characterization of closure spaces of filters in a complete Heyting lattice (Corollary 3.4). If = 0 and = we obtain a characterization of closure space of all principial filters in a completely distributive complete lattice (Corollary 3.3). |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|