Abstract: | The standard natural deduction rules for the identity predicate have seemed to some not to be harmonious. Stephen Read has suggested an alternative introduction rule that restores harmony but presupposes second-order logic. Here it will be shown that the standard rules are in fact harmonious. To this end, natural deduction will be enriched with a theory of definitional identity. This leads to a novel conception of canonical derivation, on the basis of which the identity elimination rule can be justified in a proof-theoretical manner. |