首页 | 本学科首页   官方微博 | 高级检索  
     


A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks
Authors:Herbert Hojtink  Ivo W. Molenaar
Affiliation:(1) Department of Statistics and Measurement Theory, University of Groningen, The Netherlands
Abstract:In this paper it will be shown that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. The parameters of this latent class model will be estimated using an application of the Gibbs sampler. It will be illustrated that the Gibbs sampler is an excellent tool if inequality constraints have to be taken into consideration when making inferences. Model fit will be investigated using posterior predictive checks. Checks for manifest monotonicity, the agreement between the observed and expected conditional association structure, marginal local homogeneity, and the number of latent classes will be presented.This paper is supported by grant S40-645 of the Dutch Organization for Scientific Research (NWO).
Keywords:Gibbs sampler  posterior predictive checks  nonparametric item response theory  multidimensional  manifest monotonicity  local homogeneity  conditional association
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号