首页 | 本学科首页   官方微博 | 高级检索  
     


Perceptual, oculomotor, and neural responses to moving color plaids
Authors:Dobkins K R  Stoner G R  Albright T D
Affiliation:Department of Psychology, University of California, San Diego, La Jolla 92093, USA. kdobkins@ucsd.edu
Abstract:Moving plaids constructed from two achromatic gratings of identical luminance contrast are known to yield a percept of coherent pattern motion, as are plaids constructed from two identical chromatic (e.g. isoluminant red/green) gratings. To examine the interactive influences of chromatic and luminance contrast on the integration of visual motion signals, we constructed plaids with gratings that possessed both forms of contrast. We used plaids of two basic types, which differed with respect to the phase relationship between chromatic and luminance modulations (after Kooi et al, 1992 Perception 21 583-598). One plaid type ('symmetric') was made from component gratings that had identical chromatic/luminance phase relationships (e.g. both components were red-bright/green-dark modulation). The second plaid type ('asymmetric') was made from components that had complimentary phase relationships (i.e. one red-bright/green-dark grating and one green-bright/red-dark grating). Human subjects reported that the motion of symmetric plaids was perceptually coherent, while the components of asymmetric plaids failed to cohere. We also recorded eye movements elicited by both types of plaids to determine if they are similarly affected by these image cues for motion coherence. Results demonstrate that, under many conditions, eye movements elicited by perceptually coherent vs noncoherent plaids are distinguishable from one another. To reveal the neural bases of these perceptual and oculomotor phenomena, we also recorded the responses of neurons in the middle temporal visual area (area MT) of macaque visual cortex. Here we found that individual neurons exhibited differential tuning to symmetric vs asymmetric plaids. These neurophysiological results demonstrate that the neural mechanism for motion coherence is sensitive to the phase relationship between chromatic and luminance contrast, a finding which has implications for interactions between 'color' and 'motion' processing streams in the primate visual system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号