首页 | 本学科首页   官方微博 | 高级检索  
     


In situ stress relaxation mechanism of a superelastic NiTi shape memory alloy under hydrogen charging
Authors:Wissem Elkhal Letaief  Tarek Hassine
Affiliation:Laboratory of Mechanics of Sousse, The National Engineering School of Sousse, University of Sousse, Sousse, Tunisia
Abstract:On account of its good biocompatibility, superelastic Ni–Ti arc wire alloys have been successfully used in orthodontic clinics. Nevertheless, delayed fracture in the oral cavity caused by hydrogen diffusion can be observed. The in situ stress relaxation susceptibility of a Ni–Ti shape memory alloy towards hydrogen embrittlement has been examined with respect to the current densities and imposed deformations. Orthodontic wires have been relaxed at different martensite volume fractions using current densities of 5, 10 and 20 A/m2 at 20 °C. The in situ relaxation stress shows that, for an imposed strain at the middle of the austenite–martensite transformation, the specimen fractures at the martensite–austenite reverse transformation. However, for an imposed strain at the beginning of the austenite–martensite plateau, the stress decreases in a similar way to the full austenite structure. Moreover, the stress plateau has been recorded at the reverse transformation for a short period. For the fully martensite structure, embrittlement occurs at a higher stress value. This behaviour is attributed to the interaction between the in situ austenite phase expansion and the diffusion of hydrogen in the different volume fractions of the martensite phase, produced at an imposed strain.
Keywords:Shape memory alloy (SMA)  relaxation  hydrogen in metals  martensitic transformation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号