首页 | 本学科首页   官方微博 | 高级检索  
     


Algebras and Matrices for Annotated Logics
Authors:Lewin  R.A.  Mikenberg  I.F.  Schwarze  M.G.
Affiliation:(1) Facultad de Matematicas, Pontificia Universidad Católica de Chile, Santiago, Chile;(2) Facultad de Matematicas, Pontificia Universidad Católica de Chile, Santiago, Chile
Abstract:We study the matrices, reduced matrices and algebras associated to the systems SALscrT of structural annotated logics. In previous papers, these systems were proven algebraizable in the finitary case and the class of matrices analyzed here was proven to be a matrix semantics for them.We prove that the equivalent algebraic semantics associated with the systems SALscrT are proper quasivarieties, we describe the reduced matrices, the subdirectly irreducible algebras and we give a general decomposition theorem. As a consequence we obtain a decision procedure for these logics.
Keywords:Annotated logics  paraconsistency  algebraic semantics  matrix semantics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号