首页 | 本学科首页   官方微博 | 高级检索  
     


A single serotonergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail
Authors:Balaban P M  Bravarenko N I  Maksimova O A  Nikitin E  Ierusalimsky V N  Zakharov I S
Affiliation:Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Butlerova 5A, Moscow, 117865, Russia. balaban@ihna.msk.ru
Abstract:A cluster of 40 serotonergic cells in the rostral part of pedal ganglia of the terrestrial snail Helix lucorum was shown previously to participate in the modulation of withdrawal behavior and to be necessary during the acquisition of aversive withdrawal conditioning in intact snails. Local extracellular stimulation of the serotonergic cells paired with a test stimulus elicited a pairing-specific increase (the difference between paired and explicitly unpaired sessions was significant, p <.01) of synaptic responses to test stimulation in the premotor interneurons involved in withdrawal. This result suggested participation of serotonergic cells in mediating the reinforcement in the withdrawal network. Intracellular stimulation of only one identified Pd4 cell from the pedal group of serotonergic neurons paired with a test stimulus also significantly increased (the difference between paired and explicitly unpaired sessions was significant, p <.05) synaptic responses to paired nerve stimulation in same premotor interneurons involved in withdrawal. Morphological investigation of a cluster of pedal serotonergic neurons showed that only the Pd4 cell had branches in the parietal ganglia neuropile where the synapses of premotor withdrawal interneurons and of presynaptic neurons are located. The data suggest that a single serotonergic cell can mediate the reinforcement in the withdrawal network of the terrestrial snail. Patterns of responses of the Pd4 cells to tactile and chemical stimuli conform to the suggestion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号