首页 | 本学科首页   官方微博 | 高级检索  
     


A latent class approach to fitting the weighted Euclidean model,clascal
Authors:Suzanne Winsberg  Geert De Soete
Affiliation:(1) IRCAM, Paris, France;(2) Department of Data Analysis, University of Ghent, Henri Dunantlaan 2, B-9000 Ghent, Belgium
Abstract:A weighted Euclidean distance model for analyzing three-way proximity data is proposed that incorporates a latent class approach. In this latent class weighted Euclidean model, the contribution to the distance function between two stimuli is per dimension weighted identically by all subjects in the same latent class. This model removes the rotational invariance of the classical multidimensional scaling model retaining psychologically meaningful dimensions, and drastically reduces the number of parameters in the traditional INDSCAL model. The probability density function for the data of a subject is posited to be a finite mixture of spherical multivariate normal densities. The maximum likelihood function is optimized by means of an EM algorithm; a modified Fisher scoring method is used to update the parameters in the M-step. A model selection strategy is proposed and illustrated on both real and artificial data.The second author is supported as ldquoBevoegdverklaard Navorserrdquo of the Belgian ldquoNationaal Fonds voor Wetenschappelijk Onderzoekrdquo.
Keywords:weighted Euclidean distance model  INDSCAL  latent class analysis  mixture distribution model  EM algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号