A Necessary Relation Algebra for Mereotopology |
| |
Authors: | Ivo DÜntsch Gunther Schmidt Michael Winter |
| |
Affiliation: | (1) School of Information and Software Engineering, University of Ulster, Newtonabbey, BT 37 0QB, N, Ireland;(2) Department of Computer Science, University of the Federal Armed Forces Munich, 85577 Neubiberg, Germany |
| |
Abstract: | The standard model for mereotopological structures are Boolean subalgebras of the complete Boolean algebra of regular closed subsets of a nonempty connected regular T0 topological space with an additional "contact relation" C defined by xCy x ØA (possibly) more general class of models is provided by the Region Connection Calculus (RCC) of Randell et al. We show that the basic operations of the relational calculus on a "contact relation" generate at least 25 relations in any model of the RCC, and hence, in any standard model of mereotopology. It follows that the expressiveness of the RCC in relational logic is much greater than the original 8 RCC base relations might suggest. We also interpret these 25 relations in the the standard model of the collection of regular open sets in the two-dimensional Euclidean plane. |
| |
Keywords: | mereology mereotopology relation algebra qualitative spatial reasoning |
本文献已被 SpringerLink 等数据库收录! |
|