首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphological and magnetic response of copper-substituted nickel ferrite nanoparticles
Authors:I Toqeer  M Y Naz  M Azam  M A S Alkanhal  R M M Meer
Institution:1. Department of Physics, University of Agriculture Faisalabad, Pakistan;2. Department of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia
Abstract:Ferrite nanoparticles are interesting materials owing to their unique physical and chemical properties. The metal-doped ferrites have well-defined structures and magnetic response, such as high permeability for a specific frequency range. In this study, copper-substituted nickel ferrite (Ni1?xCuxFe2O4) nanoparticles with a compositional range of 0?≤?x?≤?0.3 were synthesised through a co-precipitation technique. Metal chlorides were used as precursors and NaOH as a precipitating agent for the growth of ferrite nanoparticles. To minimise the internal stresses and maximise the magnetic response, ferrite nanoparticles were annealed in a furnace at 700°C for 6 h. The structural and magnetic response of Ni1?xCuxFe2O4 ferrite with different values of x were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM) and X-ray Diffraction (XRD) techniques. XRD analysis confirmed the formation of cubic spinel structure of single phase for all the compositions. The lattice constant decreased with increase in the value of x. FT-IR study showed two main metal oxygen bonds in the range 500–700 cm?1 confirming the formation of a single-phase cubic inverse structure of Cu-substituted Ni ferrite. VSM results revealed the formation of ferrimagnetic nanoparticles. The optical and magnetic response of the ferrite nanoparticles changed with Cu content.
Keywords:Spinel structure  surface morphology  nanocrystals  coercivity  ferrimagnetic material
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号