首页 | 本学科首页   官方微博 | 高级检索  
     


AIC model selection using Akaike weights
Authors:Eric-Jan?Wagenmakers  author-information"  >  author-information__contact u-icon-before"  >  mailto:ewagenmakers@fmg.uva.nl"   title="  ewagenmakers@fmg.uva.nl"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Simon?Farrell  author-information"  >  author-information__contact u-icon-before"  >  mailto:simon.farrell@bristol. ac.uk"   title="  simon.farrell@bristol. ac.uk"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:Northwestern University, Evanston, Illinois, USA. ewagenmakers@fmg.uva.nl
Abstract:The Akaike information criterion (AIC; Akaike, 1973) is a popular method for comparing the adequacy of multiple, possibly nonnested models. Current practice in cognitive psychology is to accept a single model on the basis of only the “raw” AIC values, making it difficult to unambiguously interpret the observed AIC differences in terms of a continuous measure such as probability. Here we demonstrate that AIC values can be easily transformed to so-called Akaike weights (e.g., Akaike, 1978, 1979; Bozdogan, 1987; Burnham & Anderson, 2002), which can be directly interpreted as conditional probabilities for each model. We show by example how these Akaike weights can greatly facilitate the interpretation of the results of AIC model comparison procedures.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号