首页 | 本学科首页   官方微博 | 高级检索  
     


Extending problem-solving procedures through reflection
Affiliation:1. College of Management and Economics, Tianjin University, China;2. Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742, United States;3. Department of Business Administration, University of Oviedo, Oviedo, Spain;4. EMLYON Business School, 23 avenue Guy de Collongue, CS 40203, 69134 Ecully cedex, France;1. Dept. of Artificial Intelligence, University of Groningen, The Netherlands;2. Dept. of Psychology, University of Groningen, The Netherlands;1. Melbourne School of Psychological Sciences, The University of Melbourne, Australia;2. Department of Psychology, The University of Copenhagen, Copenhagen, Denmark
Abstract:A large-sample (n = 75) fMRI study guided the development of a theory of how people extend their problem-solving procedures by reflecting on them. Both children and adults were trained on a new mathematical procedure and then were challenged with novel problems that required them to change and extend their procedure to solve these problems. The fMRI data were analyzed using a combination of hidden Markov models (HMMs) and multi-voxel pattern analysis (MVPA). This HMM–MVPA analysis revealed the existence of 4 stages: Encoding, Planning, Solving, and Responding. Using this analysis as a guide, an ACT-R model was developed that improved the performance of the HMM–MVPA and explained the variation in the durations of the stages across 128 different problems. The model assumes that participants can reflect on declarative representations of the steps of their problem-solving procedures. A Metacognitive module can hold these steps, modify them, create new declarative steps, and rehearse them. The Metacognitive module is associated with activity in the rostrolateral prefrontal cortex (RLPFC). The ACT-R model predicts the activity in the RLPFC and other regions associated with its other cognitive modules (e.g., vision, retrieval). Differences between children and adults seemed related to differences in background knowledge and computational fluency, but not to the differences in their capability to modify procedures.
Keywords:Mathematical problem solving  Reflection  Cognitive modeling  Multivoxel pattern analysis  Hidden Markov models
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号