首页 | 本学科首页   官方微博 | 高级检索  
     


Correlational Data,Causal Hypotheses,and Validity
Authors:Federica?Russo  author-information"  >  author-information__contact u-icon-before"  >  mailto:f.russo@kent.ac.uk"   title="  f.russo@kent.ac.uk"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Philosophy - SECL, University of Kent, Kent, UK
Abstract:A shared problem across the sciences is to make sense of correlational data coming from observations and/or from experiments. Arguably, this means establishing when correlations are causal and when they are not. This is an old problem in philosophy. This paper, narrowing down the scope to quantitative causal analysis in social science, reformulates the problem in terms of the validity of statistical models. Two strategies to make sense of correlational data are presented: first, a ‘structural strategy’, the goal of which is to model and test causal structures that explain correlational data; second, a ‘manipulationist or interventionist strategy’, that hinges upon the notion of invariance under intervention. It is argued that while the former can offer a solution the latter cannot.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号