Ultrastructural plasticity associated with hippocampal-dependent learning: a meta-analysis |
| |
Authors: | Marrone Diano F |
| |
Affiliation: | Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, Ont., Canada. diano@nsma.arizona.edu |
| |
Abstract: | In order to develop a profile of how individual synapses in the hippocampal formation alter their structure following learning experience, a meta-analysis synthesized the available literature on morphological change following hippocampal-dependent learning. Analysis of the 132 calculated effect sizes suggest a consistent profile of morphological change in the hippocampus following learning experience. Across the hippocampal formation, dendritic complexity, spine density, and the size of perforated postsynaptic densities showed consistent increases following training. Both the density of synapses in general and perforated synapses in particular showed unique responses to training, depending on the duration of training and/or different cell layers of the hippocampal formation. Most importantly, it seems that this profile, while consistent, is small and specific--only a select few of the morphological parameters typically measured in anatomical studies of plasticity showed significant change following training. Collectively, these data suggest that the distinct electrophysiological properties of neocortical versus hippocampal synapses may be at least partially mediated by distinct morphological cascades. That is, on the basis of theory, and with the support of the current data, it seems that synaptogenesis correlates with enduring neocortical plasticity, while structural changes correlate with more transient hippocampal plasticity. To be able to state these conclusions with conviction, however, more data are needed in several key areas for continued pursuit of the morphological correlates of hippocampal-dependent learning. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|